geberta-base-finetuned-augmentation
This model is a fine-tuned version of ikim-uk-essen/geberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4327
- F1: 0.6097
- Roc Auc: 0.7506
- Accuracy: 0.4563
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3808 | 1.0 | 141 | 0.3997 | 0.2027 | 0.5729 | 0.3119 |
0.3278 | 2.0 | 282 | 0.3627 | 0.3647 | 0.6353 | 0.3939 |
0.2881 | 3.0 | 423 | 0.3447 | 0.4099 | 0.6583 | 0.4349 |
0.2479 | 4.0 | 564 | 0.3317 | 0.4440 | 0.6741 | 0.4456 |
0.1888 | 5.0 | 705 | 0.3475 | 0.5081 | 0.6974 | 0.4439 |
0.135 | 6.0 | 846 | 0.3659 | 0.5597 | 0.7345 | 0.4332 |
0.1031 | 7.0 | 987 | 0.3894 | 0.5817 | 0.7401 | 0.4635 |
0.0755 | 8.0 | 1128 | 0.4100 | 0.5799 | 0.7292 | 0.4510 |
0.0559 | 9.0 | 1269 | 0.4327 | 0.6097 | 0.7506 | 0.4563 |
0.041 | 10.0 | 1410 | 0.4568 | 0.5988 | 0.7464 | 0.4456 |
0.0247 | 11.0 | 1551 | 0.4807 | 0.5891 | 0.7399 | 0.4456 |
0.0188 | 12.0 | 1692 | 0.5030 | 0.5945 | 0.7443 | 0.4403 |
0.0169 | 13.0 | 1833 | 0.5272 | 0.6055 | 0.7508 | 0.4510 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 18
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.