|
--- |
|
base_model: BAAI/bge-m3 |
|
datasets: [] |
|
language: [] |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:4532 |
|
- loss:CoSENTLoss |
|
widget: |
|
- source_sentence: портативный проектор umiio a 008 |
|
sentences: |
|
- портативный проектор philips a 008 |
|
- logitech c270i iptv |
|
- детский электромобиль sundays land rover jj012 |
|
- source_sentence: запчасти для швейных машин bernette |
|
sentences: |
|
- мфу samsung m428fdw |
|
- запасные части для швейной машины bernette |
|
- steelseries apex pro mini wireless |
|
- source_sentence: сушильная машина maunfeld mfdm1410wh06 |
|
sentences: |
|
- кухонные уголки |
|
- сушильная машина simens mfdm1410wh06 |
|
- сетевой удлинитель евро eu-4 multi-protection 4usb qy-923 2500w |
|
- source_sentence: монитор acer k242hql |
|
sentences: |
|
- multiflashlight armytek zippy green |
|
- роутер mi router 4c r4cm dvb4231gl |
|
- монитор acer k224hql |
|
- source_sentence: набор моя первая кухня |
|
sentences: |
|
- кухонные наборы |
|
- ea sports fc 23 ps4 |
|
- da vinci белая |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-m3 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9701810342203735 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9168792089469636 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9695654298959763 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.9165761310923896 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9696385323216731 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9166348972420479 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9631206697635591 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.9173046326579305 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9701810342203735 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.9173046326579305 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-m3 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision babcf60cae0a1f438d7ade582983d4ba462303c2 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("seregadgl101/test_bge_2_10ep") |
|
# Run inference |
|
sentences = [ |
|
'набор моя первая кухня', |
|
'кухонные наборы', |
|
'ea sports fc 23 ps4', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9702 | |
|
| **spearman_cosine** | **0.9169** | |
|
| pearson_manhattan | 0.9696 | |
|
| spearman_manhattan | 0.9166 | |
|
| pearson_euclidean | 0.9696 | |
|
| spearman_euclidean | 0.9166 | |
|
| pearson_dot | 0.9631 | |
|
| spearman_dot | 0.9173 | |
|
| pearson_max | 0.9702 | |
|
| spearman_max | 0.9173 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 4,532 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 14.45 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.09 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.6</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------|:-------------------------------------------------------------|:-----------------| |
|
| <code>батут evo jump internal 12ft</code> | <code>батут evo jump internal 12ft</code> | <code>1.0</code> | |
|
| <code>наручные часы orient casual</code> | <code>наручные часы orient</code> | <code>1.0</code> | |
|
| <code>электрический духовой шкаф weissgauff eov 19 mw</code> | <code>электрический духовой шкаф weissgauff eov 19 mx</code> | <code>0.4</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 504 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 14.93 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.1 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.59</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:------------------------------------------------------------------------------|:--------------------------------------------------------|:-----------------| |
|
| <code>потолочный светильник yeelight smart led ceiling light c2001s500</code> | <code>yeelight smart led ceiling light c2001s500</code> | <code>1.0</code> | |
|
| <code>канцелярские принадлежности</code> | <code>канцелярские принадлежности разные</code> | <code>0.4</code> | |
|
| <code>usb-магнитола acv avs-1718g</code> | <code>автомагнитола acv avs-1718g</code> | <code>1.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `save_only_model`: True |
|
- `seed`: 33 |
|
- `fp16`: True |
|
- `load_best_model_at_end`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: True |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 33 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | |
|
|:----------:|:--------:|:-------------:|:----------:|:-----------------------:| |
|
| 0.0882 | 50 | - | 2.7444 | 0.4991 | |
|
| 0.1764 | 100 | - | 2.5535 | 0.6093 | |
|
| 0.2646 | 150 | - | 2.3365 | 0.6761 | |
|
| 0.3527 | 200 | - | 2.1920 | 0.7247 | |
|
| 0.4409 | 250 | - | 2.2210 | 0.7446 | |
|
| 0.5291 | 300 | - | 2.1432 | 0.7610 | |
|
| 0.6173 | 350 | - | 2.2488 | 0.7769 | |
|
| 0.7055 | 400 | - | 2.3736 | 0.7749 | |
|
| 0.7937 | 450 | - | 2.0688 | 0.7946 | |
|
| 0.8818 | 500 | 2.3647 | 2.5331 | 0.7879 | |
|
| 0.9700 | 550 | - | 2.1087 | 0.7742 | |
|
| 1.0582 | 600 | - | 2.1302 | 0.8068 | |
|
| 1.1464 | 650 | - | 2.2669 | 0.8114 | |
|
| 1.2346 | 700 | - | 2.0269 | 0.8039 | |
|
| 1.3228 | 750 | - | 2.2095 | 0.8138 | |
|
| 1.4109 | 800 | - | 2.5288 | 0.8190 | |
|
| 1.4991 | 850 | - | 2.3442 | 0.8222 | |
|
| 1.5873 | 900 | - | 2.3759 | 0.8289 | |
|
| 1.6755 | 950 | - | 2.1893 | 0.8280 | |
|
| 1.7637 | 1000 | 2.0682 | 2.0056 | 0.8426 | |
|
| 1.8519 | 1050 | - | 2.0832 | 0.8527 | |
|
| 1.9400 | 1100 | - | 2.0336 | 0.8515 | |
|
| 2.0282 | 1150 | - | 2.0571 | 0.8591 | |
|
| 2.1164 | 1200 | - | 2.1516 | 0.8565 | |
|
| 2.2046 | 1250 | - | 2.2035 | 0.8602 | |
|
| 2.2928 | 1300 | - | 2.5294 | 0.8513 | |
|
| 2.3810 | 1350 | - | 2.4177 | 0.8647 | |
|
| 2.4691 | 1400 | - | 2.1630 | 0.8709 | |
|
| 2.5573 | 1450 | - | 2.1279 | 0.8661 | |
|
| 2.6455 | 1500 | 1.678 | 2.1639 | 0.8744 | |
|
| 2.7337 | 1550 | - | 2.2592 | 0.8799 | |
|
| 2.8219 | 1600 | - | 2.2288 | 0.8822 | |
|
| 2.9101 | 1650 | - | 2.2427 | 0.8831 | |
|
| 2.9982 | 1700 | - | 2.4380 | 0.8776 | |
|
| 3.0864 | 1750 | - | 2.1689 | 0.8826 | |
|
| 3.1746 | 1800 | - | 1.8099 | 0.8868 | |
|
| 3.2628 | 1850 | - | 2.0881 | 0.8832 | |
|
| 3.3510 | 1900 | - | 2.0785 | 0.8892 | |
|
| 3.4392 | 1950 | - | 2.2512 | 0.8865 | |
|
| 3.5273 | 2000 | 1.2168 | 2.1249 | 0.8927 | |
|
| 3.6155 | 2050 | - | 2.1179 | 0.8950 | |
|
| 3.7037 | 2100 | - | 2.1932 | 0.8973 | |
|
| 3.7919 | 2150 | - | 2.2628 | 0.8967 | |
|
| 3.8801 | 2200 | - | 2.0764 | 0.8972 | |
|
| 3.9683 | 2250 | - | 1.9575 | 0.9012 | |
|
| 4.0564 | 2300 | - | 2.3302 | 0.8985 | |
|
| 4.1446 | 2350 | - | 2.3008 | 0.8980 | |
|
| 4.2328 | 2400 | - | 2.2886 | 0.8968 | |
|
| 4.3210 | 2450 | - | 2.1694 | 0.8973 | |
|
| 4.4092 | 2500 | 1.0851 | 2.1102 | 0.9010 | |
|
| 4.4974 | 2550 | - | 2.2596 | 0.9021 | |
|
| 4.5855 | 2600 | - | 2.1944 | 0.9019 | |
|
| 4.6737 | 2650 | - | 2.0728 | 0.9029 | |
|
| 4.7619 | 2700 | - | 2.4573 | 0.9031 | |
|
| 4.8501 | 2750 | - | 2.2306 | 0.9057 | |
|
| 4.9383 | 2800 | - | 2.2637 | 0.9068 | |
|
| 5.0265 | 2850 | - | 2.5110 | 0.9068 | |
|
| 5.1146 | 2900 | - | 2.6613 | 0.9042 | |
|
| 5.2028 | 2950 | - | 2.4713 | 0.9070 | |
|
| 5.2910 | 3000 | 0.8143 | 2.3709 | 0.9082 | |
|
| 5.3792 | 3050 | - | 2.6083 | 0.9058 | |
|
| 5.4674 | 3100 | - | 2.5377 | 0.9044 | |
|
| 5.5556 | 3150 | - | 2.3146 | 0.9071 | |
|
| 5.6437 | 3200 | - | 2.2603 | 0.9085 | |
|
| 5.7319 | 3250 | - | 2.5842 | 0.9068 | |
|
| 5.8201 | 3300 | - | 2.6045 | 0.9093 | |
|
| 5.9083 | 3350 | - | 2.6207 | 0.9103 | |
|
| 5.9965 | 3400 | - | 2.5992 | 0.9098 | |
|
| 6.0847 | 3450 | - | 2.7799 | 0.9090 | |
|
| 6.1728 | 3500 | 0.5704 | 2.7198 | 0.9098 | |
|
| 6.2610 | 3550 | - | 2.9783 | 0.9089 | |
|
| 6.3492 | 3600 | - | 2.4165 | 0.9120 | |
|
| 6.4374 | 3650 | - | 2.4488 | 0.9122 | |
|
| 6.5256 | 3700 | - | 2.6764 | 0.9113 | |
|
| 6.6138 | 3750 | - | 2.5327 | 0.9130 | |
|
| 6.7019 | 3800 | - | 2.5875 | 0.9129 | |
|
| 6.7901 | 3850 | - | 2.7036 | 0.9130 | |
|
| 6.8783 | 3900 | - | 2.7566 | 0.9120 | |
|
| 6.9665 | 3950 | - | 2.5488 | 0.9127 | |
|
| 7.0547 | 4000 | 0.4287 | 2.8512 | 0.9127 | |
|
| 7.1429 | 4050 | - | 2.7361 | 0.9128 | |
|
| 7.2310 | 4100 | - | 2.7434 | 0.9135 | |
|
| 7.3192 | 4150 | - | 2.9410 | 0.9129 | |
|
| 7.4074 | 4200 | - | 2.9452 | 0.9126 | |
|
| 7.4956 | 4250 | - | 2.8665 | 0.9140 | |
|
| 7.5838 | 4300 | - | 2.8215 | 0.9145 | |
|
| 7.6720 | 4350 | - | 2.6978 | 0.9147 | |
|
| 7.7601 | 4400 | - | 2.8445 | 0.9143 | |
|
| 7.8483 | 4450 | - | 2.6041 | 0.9155 | |
|
| 7.9365 | 4500 | 0.3099 | 2.7219 | 0.9155 | |
|
| 8.0247 | 4550 | - | 2.7180 | 0.9160 | |
|
| 8.1129 | 4600 | - | 2.6906 | 0.9160 | |
|
| 8.2011 | 4650 | - | 2.8628 | 0.9156 | |
|
| 8.2892 | 4700 | - | 2.7820 | 0.9158 | |
|
| 8.3774 | 4750 | - | 2.8457 | 0.9157 | |
|
| 8.4656 | 4800 | - | 2.7286 | 0.9160 | |
|
| 8.5538 | 4850 | - | 2.7131 | 0.9164 | |
|
| 8.6420 | 4900 | - | 2.8368 | 0.9165 | |
|
| 8.7302 | 4950 | - | 2.8033 | 0.9167 | |
|
| 8.8183 | 5000 | 0.2342 | 2.7307 | 0.9169 | |
|
| 8.9065 | 5050 | - | 2.8483 | 0.9167 | |
|
| 8.9947 | 5100 | - | 2.9736 | 0.9167 | |
|
| 9.0829 | 5150 | - | 2.9151 | 0.9168 | |
|
| 9.1711 | 5200 | - | 2.9375 | 0.9167 | |
|
| 9.2593 | 5250 | - | 2.9968 | 0.9168 | |
|
| 9.3474 | 5300 | - | 3.0024 | 0.9167 | |
|
| 9.4356 | 5350 | - | 2.9444 | 0.9167 | |
|
| 9.5238 | 5400 | - | 2.9477 | 0.9167 | |
|
| 9.6120 | 5450 | - | 2.9205 | 0.9168 | |
|
| **9.7002** | **5500** | **0.1639** | **2.9286** | **0.9167** | |
|
| 9.7884 | 5550 | - | 2.9421 | 0.9168 | |
|
| 9.8765 | 5600 | - | 2.9733 | 0.9168 | |
|
| 9.9647 | 5650 | - | 2.9777 | 0.9169 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |