Edit model card

image/png

Dialog2Flow joint target model (BERT-base)

This is the original D2F$_{joint}$ model introduced in the paper "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction" published in the EMNLP 2024 main conference.

Implementation-wise, this is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["your phone please", "okay may i have your telephone number please"]

model = SentenceTransformer('sergioburdisso/dialog2flow-joint-bert-base')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['your phone please', 'okay may i have your telephone number please']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-bert-base')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 363506 with parameters:

{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss

DataLoader:

torch.utils.data.dataloader.DataLoader of length 49478 with parameters:

{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss

Parameters of the fit()-Method:

{
    "epochs": 15,
    "evaluation_steps": 164,
    "evaluator": [
        "spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator"
    ],
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 3e-06
    },
    "scheduler": "WarmupLinear",
    "warmup_steps": 100,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citation

@inproceedings{burdisso-etal-2024-dialog2flow,
    title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
    author = "Burdisso, Sergio  and
      Madikeri, Srikanth  and
      Motlicek, Petr",
    booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2024",
    address = "Miami",
    publisher = "Association for Computational Linguistics",
}

License

Copyright (c) 2024 Idiap Research Institute. MIT License.

Downloads last month
185
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sergioburdisso/dialog2flow-joint-bert-base

Finetuned
(2072)
this model

Datasets used to train sergioburdisso/dialog2flow-joint-bert-base

Collection including sergioburdisso/dialog2flow-joint-bert-base