metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-arabic-colab-CV16.0
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_16_0
type: common_voice_16_0
config: ar
split: None
args: ar
metrics:
- name: Wer
type: wer
value: 1
w2v-bert-2.0-arabic-colab-CV16.0
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0 | 3.9474 | 300 | nan | 1.0 |
0.0 | 7.8947 | 600 | nan | 1.0 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.8.0+cu128
- Datasets 2.21.0
- Tokenizers 0.19.1