Shuttle 3 Diffusion
Model Variants
These model variants provide different precision levels and formats optimized for diverse hardware capabilities and use cases
Shuttle 3 Diffusion is a text-to-image AI model designed to create detailed and diverse images from textual prompts in just 4 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
You can try out the model through a website at https://chat.shuttleai.com/images
Using the model via API
You can use Shuttle 3 Diffusion via API through ShuttleAI
Using the model with 🧨 Diffusers
Install or upgrade diffusers
pip install -U diffusers
Then you can use DiffusionPipeline
to run the model
import torch
from diffusers import DiffusionPipeline
# Load the diffusion pipeline from a pretrained model, using bfloat16 for tensor types.
pipe = DiffusionPipeline.from_pretrained(
"shuttleai/shuttle-3-diffusion", torch_dtype=torch.bfloat16
).to("cuda")
# Uncomment the following line to save VRAM by offloading the model to CPU if needed.
# pipe.enable_model_cpu_offload()
# Uncomment the lines below to enable torch.compile for potential performance boosts on compatible GPUs.
# Note that this can increase loading times considerably.
# pipe.transformer.to(memory_format=torch.channels_last)
# pipe.transformer = torch.compile(
# pipe.transformer, mode="max-autotune", fullgraph=True
# )
# Set your prompt for image generation.
prompt = "A cat holding a sign that says hello world"
# Generate the image using the diffusion pipeline.
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=4,
max_sequence_length=256,
# Uncomment the line below to use a manual seed for reproducible results.
# generator=torch.Generator("cpu").manual_seed(0)
).images[0]
# Save the generated image.
image.save("shuttle.png")
To learn more check out the diffusers documentation
Using the model with ComfyUI
To run local inference with Shuttle 3 Diffusion using ComfyUI, you can use this safetensors file.
Comparison to other models
Shuttle 3 Diffusion can produce images better images than Flux Dev in just four steps, while being licensed under Apache 2. More examples
Training Details
Shuttle 3 Diffusion uses Flux.1 Schnell as its base. It can produce images similar to Flux Dev or Pro in just 4 steps, and it is licensed under Apache 2. The model was partially de-distilled during training. When used beyond 10 steps, it enters "refiner mode," enhancing image details without altering the composition. We overcame the limitations of the Schnell-series models by employing a special training method, resulting in improved details and colors.
- Downloads last month
- 1,402