|
--- |
|
tags: |
|
- transformers |
|
- llama |
|
- trl |
|
- orpeheutts |
|
- tts |
|
- Texttospeech |
|
license: apache-2.0 |
|
language: |
|
- es |
|
datasets: |
|
- sirekist98/spanish_tts_noauddataset_24khz |
|
base_model: |
|
- canopylabs/3b-es_it-pretrain-research_release |
|
pipeline_tag: text-to-speech |
|
--- |
|
# Spanish TTS Model with Emotions and Multiple Voices |
|
|
|
This repository contains a fine-tuned Spanish Text-to-Speech (TTS) model based on [`canopylabs/3b-es_it-pretrain-research_release`](https://huggingface.co/canopylabs/3b-es_it-pretrain-research_release). The model supports multiple voices and nuanced emotions, trained using [Unsloth](https://github.com/unslothai/unsloth) and [SNAC](https://huggingface.co/hubertsiuzdak/snac_24khz) for audio tokenization. |
|
|
|
➡️ **Try it online**: [https://huggingface.co/spaces/sirekist98/orpheustts\_spanish\_tuned](https://huggingface.co/spaces/sirekist98/orpheustts_spanish_tuned) |
|
|
|
--- |
|
|
|
## 👨💻 Model Summary |
|
|
|
* **Base model**: `canopylabs/3b-es_it-pretrain-research_release` |
|
* **Fine-tuned with**: LoRA adapters (64 rank, alpha 64) |
|
* **Audio tokenization**: SNAC (24kHz) |
|
* **Input format**: `source (emotion): text` |
|
* **Dataset**: \~109k samples, 11 emotions × 11 speakers |
|
* **Training framework**: Unsloth + Hugging Face Transformers |
|
|
|
--- |
|
|
|
## 🚀 Training Overview |
|
|
|
The model was trained on a curated subset of the dataset [`sirekist98/spanish_tts_noauddataset_24khz`](https://huggingface.co/datasets/sirekist98/spanish_tts_noauddataset_24khz). We selected combinations of speaker (`source`) and `emotion` with at least 1000 samples, resulting in a balanced dataset of over 109,000 examples. |
|
|
|
Each sample was tokenized using SNAC and embedded in a prompt structured as: |
|
|
|
```text |
|
source (emotion): text |
|
``` |
|
|
|
This prompt was then used to generate audio tokens, enabling the model to learn nuanced emotional prosody and voice control. |
|
|
|
We trained the model for 1 epoch using gradient accumulation (batch size 8 × 4 steps) with 4-bit quantization on an NVIDIA L4 GPU. |
|
|
|
--- |
|
|
|
## 🔊 Inference |
|
|
|
You can run inference using the demo space: [Orpheus TTS Spanish Fine-Tuned](https://huggingface.co/spaces/sirekist98/orpheustts_spanish_tuned). |
|
|
|
To run inference locally with full control: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from peft import PeftModel |
|
from snac import SNAC |
|
|
|
# --- Minimal config --- |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
BASE = "canopylabs/3b-es_it-pretrain-research_release" |
|
LORA = "sirekist98/spanish_tts_emotions" |
|
SNAC_ID = "hubertsiuzdak/snac_24khz" |
|
|
|
VOICE = "alloy" |
|
EMOTION_ID = "intense_fear_dread_apprehension_horror_terror_panic" |
|
TEXT = "Estoy atrapado, por favor ayúdame." |
|
prompt = f"{VOICE} ({EMOTION_ID}): {TEXT}" |
|
|
|
# --- Load models --- |
|
tokenizer = AutoTokenizer.from_pretrained(BASE) |
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
BASE, |
|
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32 |
|
) |
|
model = PeftModel.from_pretrained(base_model, LORA).to(device).eval() |
|
snac_model = SNAC.from_pretrained(SNAC_ID).to(device) |
|
|
|
# --- Prepare input (same as your Space) --- |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) |
|
start_tok = torch.tensor([[128259]], dtype=torch.long).to(device) |
|
end_toks = torch.tensor([[128009, 128260]], dtype=torch.long).to(device) |
|
|
|
input_ids = torch.cat([start_tok, input_ids, end_toks], dim=1) |
|
MAX_LEN = 4260 |
|
pad_len = MAX_LEN - input_ids.shape[1] |
|
pad = torch.full((1, pad_len), 128263, dtype=torch.long).to(device) |
|
input_ids = torch.cat([pad, input_ids], dim=1) |
|
attention_mask = torch.cat( |
|
[torch.zeros((1, pad_len), dtype=torch.long), |
|
torch.ones((1, input_ids.shape[1] - pad_len), dtype=torch.long)], |
|
dim=1 |
|
).to(device) |
|
|
|
# --- Generate --- |
|
generated = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_new_tokens=1200, |
|
do_sample=True, |
|
temperature=0.6, |
|
top_p=0.95, |
|
repetition_penalty=1.1, |
|
num_return_sequences=1, |
|
eos_token_id=128258, |
|
use_cache=True |
|
) |
|
|
|
# --- Post-process (find 128257, remove 128258, multiple of 7, subtract 128266) --- |
|
AUDIO_TOKEN_OFFSET = 128266 |
|
token_to_find = 128257 |
|
token_to_remove = 128258 |
|
|
|
idxs = (generated == token_to_find).nonzero(as_tuple=True) |
|
cropped = generated[:, idxs[1][-1].item() + 1:] if len(idxs[1]) > 0 else generated |
|
cleaned = cropped[cropped != token_to_remove] |
|
codes = cleaned[: (len(cleaned) // 7) * 7].tolist() |
|
codes = [int(t) - AUDIO_TOKEN_OFFSET for t in codes] |
|
|
|
# --- SNAC decode (same layout as your Space) --- |
|
layer_1, layer_2, layer_3 = [], [], [] |
|
for i in range((len(codes) + 1) // 7): |
|
b = 7 * i |
|
if b + 6 >= len(codes): |
|
break |
|
layer_1.append(codes[b + 0]) |
|
layer_2.append(codes[b + 1] - 4096) |
|
layer_3.append(codes[b + 2] - 2 * 4096) |
|
layer_3.append(codes[b + 3] - 3 * 4096) |
|
layer_2.append(codes[b + 4] - 4 * 4096) |
|
layer_3.append(codes[b + 5] - 5 * 4096) |
|
layer_3.append(codes[b + 6] - 6 * 4096) |
|
|
|
dev_snac = snac_model.quantizer.quantizers[0].codebook.weight.device |
|
layers = [ |
|
torch.tensor(layer_1).unsqueeze(0).to(dev_snac), |
|
torch.tensor(layer_2).unsqueeze(0).to(dev_snac), |
|
torch.tensor(layer_3).unsqueeze(0).to(dev_snac), |
|
] |
|
|
|
with torch.no_grad(): |
|
audio = snac_model.decode(layers).squeeze().cpu().numpy() |
|
|
|
# 'audio' is the 24kHz waveform. |
|
# Optional: |
|
# from scipy.io.wavfile import write as write_wav |
|
# write_wav("output.wav", 24000, audio) |
|
``` |
|
|
|
--- |
|
|
|
## 🗣️ Available Voices |
|
|
|
You can generate speech using the following voices (`source`): |
|
|
|
``` |
|
alloy, ash, ballad, coral, echo, fable, nova, onyx, sage, shimmer, verse |
|
``` |
|
|
|
## 🌧️ Available Emotions for each voice |
|
|
|
|
|
--- |
|
|
|
## alloy |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## ash |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## ballad |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
|
|
## coral |
|
|
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## echo |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## fable |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_sourness\_tartness\_and\_acidity |
|
|
|
## nova |
|
|
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## onyx |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## sage |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
* intense\_sympathy\_compassion\_warmth\_trust\_and\_tenderness |
|
|
|
## shimmer |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_confusion\_bewilderment\_disorientation\_and\_perplexity |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_pride\_dignity\_self\_confidence\_and\_honor |
|
* intense\_sourness\_tartness\_and\_acidity |
|
|
|
## verse |
|
|
|
* intense\_interest\_fascination\_curiosity\_and\_intrigue |
|
* intense\_fear\_dread\_apprehension\_and\_horror |
|
* intense\_ecstasy\_pleasure\_bliss\_rapture\_and\_beatitude |
|
* intense\_numbness\_detachment\_insensitivity\_and\_apathy |
|
* intense\_contempt\_disdain\_loathing\_and\_detestation |
|
* intense\_astonishment\_surprise\_amazement\_and\_shock |
|
* intense\_helplessness\_powerlessness\_desperation\_and\_submission |
|
* intense\_sourness\_tartness\_and\_acidity |
|
|
|
|
|
--- |
|
|
|
## 📖 Citation |
|
|
|
```bibtex |
|
@misc{sirekist2025spanishTTS, |
|
author = {sirekist98}, |
|
title = {Spanish TTS Model with Emotions and Multiple Voices}, |
|
year = {2025}, |
|
howpublished = {\url{https://huggingface.co/sirekist98/spanish_model}} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## ✨ Acknowledgements |
|
|
|
* [Unsloth](https://github.com/unslothai/unsloth) |
|
* [SNAC](https://huggingface.co/hubertsiuzdak/snac_24khz) |
|
* [Hugging Face Datasets and Spaces](https://huggingface.co/) |
|
|
|
--- |
|
|
|
## ❓ Questions or Contributions? |
|
|
|
Open an issue or contact [@sirekist98](https://huggingface.co/sirekist98) on Hugging Face. |
|
|
|
Thanks for checking out this model! 🚀 |