See axolotl config
axolotl version: 0.5.2
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-45B-4096
train_on_split: train
type: completion
test_datasets:
- path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-test-4K
split: test
type: completion
is_preprocess: true
skip_prepare_dataset: true
dataset_prepared_path:
hf_use_auth_token: true
output_dir: /mnt/home/model-team/models/Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re
resume_from_checkpoint:
auto_resume_from_checkpoints: true
sequence_len: 4096
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "sparse-tuning-cpt"
wandb_entity:
wandb_watch:
wandb_name: "Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re"
wandb_log_model:
# global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 1
max_steps: 10000
optimizer: adamw_torch
learning_rate: 0.00005
lr_scheduler: cosine
cosine_min_lr_ratio: 0.2
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 2.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re"
save_strategy: "steps"
save_steps: 500
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
local_rank:
logging_steps: 1
warmup_steps: 375
eval_steps: 500
eval_table_size:
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 2
- total_train_batch_size: 1024
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 375
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.1526 | 0.0001 | 1 | 11.1178 |
3.9513 | 0.0408 | 500 | 3.7699 |
3.4469 | 0.0817 | 1000 | 3.2772 |
3.1993 | 0.1225 | 1500 | 3.0024 |
2.8081 | 0.1633 | 2000 | 2.7218 |
2.5217 | 0.2042 | 2500 | 2.4860 |
2.3993 | 0.2450 | 3000 | 2.3570 |
2.2919 | 0.2858 | 3500 | 2.2761 |
2.2379 | 0.3267 | 4000 | 2.2180 |
2.2047 | 0.3675 | 4500 | 2.1721 |
2.1553 | 0.4083 | 5000 | 2.1367 |
2.1279 | 0.4491 | 5500 | 2.1066 |
2.0689 | 0.4900 | 6000 | 2.0822 |
2.0702 | 0.5308 | 6500 | 2.0608 |
2.0611 | 0.5716 | 7000 | 2.0425 |
2.0242 | 0.6125 | 7500 | 2.0264 |
2.0449 | 0.6533 | 8000 | 2.0140 |
2.0245 | 0.6941 | 8500 | 2.0025 |
2.0107 | 0.7350 | 9000 | 1.9933 |
1.9995 | 0.7758 | 9500 | 1.9851 |
1.9995 | 0.8166 | 10000 | 1.9784 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for skymizer/Mistral-7B-v0.1-q-sparse-fineweb-edu-table2-re
Base model
mistralai/Mistral-7B-v0.1