smcleod/Qwen2.5-Coder-7B-Instruct-Q8_0-GGUF
This model was converted to GGUF format from Qwen/Qwen2.5-Coder-7B-Instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Ollama Modelfile (draft/beta!)
# ollama create qwen2.5-coder-7b-instruct:q8_0 -f modelfiles/Modelfile-qwen2.5-coder
FROM ../qwen2.5-coder-7b-instruct-q8_0.gguf
# This is Sam's hacked up template 2024-09-19
TEMPLATE """
{{- $fim_prefix := .FIMPrefix -}}
{{- $fim_suffix := .FIMSuffix -}}
{{- $repo_name := .RepoName -}}
{{- $files := .Files -}}
{{- $has_tools := gt (len .Tools) 0 -}}
{{- if $fim_prefix -}}
<|fim_prefix|>{{ $fim_prefix }}<|fim_suffix|>{{ $fim_suffix }}<|fim_middle|>
{{- else if $repo_name -}}
<|repo_name|>{{ $repo_name }}
{{- range $files }}
<|file_sep|>{{ .Path }}
{{ .Content }}
{{- end }}
{{- else -}}
{{- if or .System $has_tools -}}
<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if $has_tools }}
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}
<|im_end|>
{{- end }}
{{- if .Messages }}
{{- range $i, $message := .Messages }}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{- else if eq .Role "assistant" }}<|im_start|>assistant
{{- if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{- range .ToolCalls }}
{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{- end }}
</tool_call>
{{- end }}<|im_end|>
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{- end }}
{{- end }}
{{- else if .Prompt -}}
<|im_start|>user
{{ .Prompt }}<|im_end|>
{{- end -}}
<|im_start|>assistant
{{ .Response }}
{{- end -}}
"""
PARAMETER stop "<|im_start|>"
PARAMETER stop "<|im_end|>"
PARAMETER stop "<|fim_prefix|>"
PARAMETER stop "<|fim_suffix|>"
PARAMETER stop "<|fim_middle|>"
PARAMETER stop "<|repo_name|>"
PARAMETER stop "<|file_sep|>"
### Tuning ##
PARAMETER num_ctx 16384
PARAMETER temperature 0.3
PARAMETER top_p 0.8
# PARAMETER num_batch 1024
# PARAMETER num_keep 512
# PARAMETER presence_penalty 0.2
# PARAMETER frequency_penalty 0.2
# PARAMETER repeat_last_n 50
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo smcleod/Qwen2.5-Coder-7B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo smcleod/Qwen2.5-Coder-7B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-7b-instruct-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo smcleod/Qwen2.5-Coder-7B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo smcleod/Qwen2.5-Coder-7B-Instruct-Q8_0-GGUF --hf-file qwen2.5-coder-7b-instruct-q8_0.gguf -c 2048
- Downloads last month
- 329
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.