Whisper_Cleverlytics
Usage
To run the model, first install the Transformers library through the GitHub repo.
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
#from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "smerchi/Arabic-Morocco-Speech_To_Text"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
audio="/content/audio.mp3"
%time result = pipe(audio)
print(result["text"],)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- num_epochs: 20
Training results
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.14.1
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for smerchi/Arabic-Morocco-Speech_To_Text
Base model
openai/whisper-large-v3