MNLP M3 Encoder SciQA
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'There are only four possible bases that make up each dna nucleotide: adenine, guanine, thymine, and?',
'The only difference between each nucleotide is the identity of the base. There are only four possible bases that make up each DNA nucleotide: adenine (A), guanine (G), thymine (T), and cytosine (C).',
'Metamorphism. This long word means “to change form. “ A rock undergoes metamorphism if it is exposed to extreme heat and pressure within the crust. With metamorphism , the rock does not melt all the way. The rock changes due to heat and pressure. A metamorphic rock may have a new mineral composition and/or texture.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_384
,dim_256
,dim_192
,dim_128
,dim_96
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_384 | dim_256 | dim_192 | dim_128 | dim_96 | dim_64 |
---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_accuracy@3 | 0.8017 | 0.7912 | 0.7788 | 0.7626 | 0.7417 | 0.7045 |
cosine_accuracy@5 | 0.8541 | 0.8398 | 0.8332 | 0.8265 | 0.8093 | 0.7684 |
cosine_accuracy@10 | 0.9276 | 0.9152 | 0.9037 | 0.8913 | 0.8732 | 0.837 |
cosine_precision@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_precision@3 | 0.2672 | 0.2637 | 0.2596 | 0.2542 | 0.2472 | 0.2348 |
cosine_precision@5 | 0.1708 | 0.168 | 0.1666 | 0.1653 | 0.1619 | 0.1537 |
cosine_precision@10 | 0.0928 | 0.0915 | 0.0904 | 0.0891 | 0.0873 | 0.0837 |
cosine_recall@1 | 0.612 | 0.5977 | 0.5891 | 0.5663 | 0.552 | 0.5167 |
cosine_recall@3 | 0.8017 | 0.7912 | 0.7788 | 0.7626 | 0.7417 | 0.7045 |
cosine_recall@5 | 0.8541 | 0.8398 | 0.8332 | 0.8265 | 0.8093 | 0.7684 |
cosine_recall@10 | 0.9276 | 0.9152 | 0.9037 | 0.8913 | 0.8732 | 0.837 |
cosine_ndcg@10 | 0.769 | 0.7559 | 0.7467 | 0.7276 | 0.712 | 0.6755 |
cosine_mrr@10 | 0.7185 | 0.705 | 0.6965 | 0.6752 | 0.6603 | 0.6239 |
cosine_map@100 | 0.721 | 0.7085 | 0.7004 | 0.6794 | 0.6649 | 0.6293 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 9,432 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 18.15 tokens
- max: 60 tokens
- min: 10 tokens
- mean: 94.56 tokens
- max: 256 tokens
- Samples:
anchor positive What is the term for atherosclerosis of arteries that supply the heart muscle?
Atherosclerosis of arteries that supply the heart muscle is called coronary heart disease . This disease may or may not have symptoms, such as chest pain. As the disease progresses, there is an increased risk of heart attack. A heart attack occurs when the blood supply to part of the heart muscle is blocked and cardiac muscle fibers die. Coronary heart disease is the leading cause of death of adults in the United States.
What term describes a drug that has an effect on the central nervous system?
Caffeine is an example of a psychoactive drug. It is found in coffee and many other products (see Table below ). Caffeine is a central nervous system stimulant . Like other stimulant drugs, it makes you feel more awake and alert. Other psychoactive drugs include alcohol, nicotine, and marijuana. Each has a different effect on the central nervous system. Alcohol, for example, is a depressant . It has the opposite effects of a stimulant like caffeine.
What scale is used to succinctly communicate the acidity or basicity of a solution?
The pH scale is used to succinctly communicate the acidity or basicity of a solution.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 192, 128, 96, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_192_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_96_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
0.5424 | 10 | 22.4049 | - | - | - | - | - | - |
1.0 | 19 | - | 0.7424 | 0.7315 | 0.7263 | 0.7093 | 0.6919 | 0.6575 |
1.0542 | 20 | 16.6616 | - | - | - | - | - | - |
1.5966 | 30 | 16.8367 | - | - | - | - | - | - |
2.0 | 38 | - | 0.7612 | 0.7520 | 0.7431 | 0.7261 | 0.7097 | 0.6708 |
2.1085 | 40 | 12.8169 | - | - | - | - | - | - |
2.6508 | 50 | 13.7826 | - | - | - | - | - | - |
3.0 | 57 | - | 0.7675 | 0.7548 | 0.7477 | 0.7274 | 0.7125 | 0.6756 |
3.1627 | 60 | 12.4455 | - | - | - | - | - | - |
3.7051 | 70 | 12.2968 | - | - | - | - | - | - |
3.8136 | 72 | - | 0.769 | 0.7559 | 0.7467 | 0.7276 | 0.712 | 0.6755 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for smikulas/MNLP_M3_document_encoder
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on dim 384self-reported0.612
- Cosine Accuracy@3 on dim 384self-reported0.802
- Cosine Accuracy@5 on dim 384self-reported0.854
- Cosine Accuracy@10 on dim 384self-reported0.928
- Cosine Precision@1 on dim 384self-reported0.612
- Cosine Precision@3 on dim 384self-reported0.267
- Cosine Precision@5 on dim 384self-reported0.171
- Cosine Precision@10 on dim 384self-reported0.093
- Cosine Recall@1 on dim 384self-reported0.612
- Cosine Recall@3 on dim 384self-reported0.802