SentenceTransformer based on google-t5/t5-base

This is a sentence-transformers model finetuned from google-t5/t5-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-t5/t5-base
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
    'A worker is looking out of a manhole.',
    'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 557,850 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 9.96 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 12.79 tokens
    • max: 44 tokens
    • min: 4 tokens
    • mean: 14.02 tokens
    • max: 57 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 6,584 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 19.41 tokens
    • max: 79 tokens
    • min: 4 tokens
    • mean: 9.69 tokens
    • max: 35 tokens
    • min: 4 tokens
    • mean: 10.35 tokens
    • max: 30 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 1e-05
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 1e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0011 10 - 1.8733
0.0023 20 - 1.8726
0.0034 30 - 1.8714
0.0046 40 - 1.8697
0.0057 50 - 1.8675
0.0069 60 - 1.8649
0.0080 70 - 1.8619
0.0092 80 - 1.8584
0.0103 90 - 1.8544
0.0115 100 3.1046 1.8499
0.0126 110 - 1.8451
0.0138 120 - 1.8399
0.0149 130 - 1.8343
0.0161 140 - 1.8283
0.0172 150 - 1.8223
0.0184 160 - 1.8159
0.0195 170 - 1.8091
0.0206 180 - 1.8016
0.0218 190 - 1.7938
0.0229 200 3.0303 1.7858
0.0241 210 - 1.7775
0.0252 220 - 1.7693
0.0264 230 - 1.7605
0.0275 240 - 1.7514
0.0287 250 - 1.7417
0.0298 260 - 1.7320
0.0310 270 - 1.7227
0.0321 280 - 1.7134
0.0333 290 - 1.7040
0.0344 300 2.9459 1.6941
0.0356 310 - 1.6833
0.0367 320 - 1.6725
0.0379 330 - 1.6614
0.0390 340 - 1.6510
0.0402 350 - 1.6402
0.0413 360 - 1.6296
0.0424 370 - 1.6187
0.0436 380 - 1.6073
0.0447 390 - 1.5962
0.0459 400 2.7813 1.5848
0.0470 410 - 1.5735
0.0482 420 - 1.5620
0.0493 430 - 1.5495
0.0505 440 - 1.5375
0.0516 450 - 1.5256
0.0528 460 - 1.5133
0.0539 470 - 1.5012
0.0551 480 - 1.4892
0.0562 490 - 1.4769
0.0574 500 2.6308 1.4640
0.0585 510 - 1.4513
0.0597 520 - 1.4391
0.0608 530 - 1.4262
0.0619 540 - 1.4130
0.0631 550 - 1.3998
0.0642 560 - 1.3874
0.0654 570 - 1.3752
0.0665 580 - 1.3620
0.0677 590 - 1.3485
0.0688 600 2.4452 1.3350
0.0700 610 - 1.3213
0.0711 620 - 1.3088
0.0723 630 - 1.2965
0.0734 640 - 1.2839
0.0746 650 - 1.2713
0.0757 660 - 1.2592
0.0769 670 - 1.2466
0.0780 680 - 1.2332
0.0792 690 - 1.2203
0.0803 700 2.2626 1.2077
0.0815 710 - 1.1959
0.0826 720 - 1.1841
0.0837 730 - 1.1725
0.0849 740 - 1.1619
0.0860 750 - 1.1516
0.0872 760 - 1.1416
0.0883 770 - 1.1320
0.0895 780 - 1.1227
0.0906 790 - 1.1138
0.0918 800 2.0044 1.1053
0.0929 810 - 1.0965
0.0941 820 - 1.0879
0.0952 830 - 1.0796
0.0964 840 - 1.0718
0.0975 850 - 1.0644
0.0987 860 - 1.0564
0.0998 870 - 1.0490
0.1010 880 - 1.0417
0.1021 890 - 1.0354
0.1032 900 1.8763 1.0296
0.1044 910 - 1.0239
0.1055 920 - 1.0180
0.1067 930 - 1.0123
0.1078 940 - 1.0065
0.1090 950 - 1.0008
0.1101 960 - 0.9950
0.1113 970 - 0.9894
0.1124 980 - 0.9840
0.1136 990 - 0.9793
0.1147 1000 1.7287 0.9752
0.1159 1010 - 0.9706
0.1170 1020 - 0.9659
0.1182 1030 - 0.9615
0.1193 1040 - 0.9572
0.1205 1050 - 0.9531
0.1216 1060 - 0.9494
0.1227 1070 - 0.9456
0.1239 1080 - 0.9415
0.1250 1090 - 0.9377
0.1262 1100 1.6312 0.9339
0.1273 1110 - 0.9303
0.1285 1120 - 0.9267
0.1296 1130 - 0.9232
0.1308 1140 - 0.9197
0.1319 1150 - 0.9162
0.1331 1160 - 0.9128
0.1342 1170 - 0.9097
0.1354 1180 - 0.9069
0.1365 1190 - 0.9040
0.1377 1200 1.5316 0.9010
0.1388 1210 - 0.8979
0.1400 1220 - 0.8947
0.1411 1230 - 0.8915
0.1423 1240 - 0.8888
0.1434 1250 - 0.8861
0.1445 1260 - 0.8833
0.1457 1270 - 0.8806
0.1468 1280 - 0.8779
0.1480 1290 - 0.8748
0.1491 1300 1.4961 0.8718
0.1503 1310 - 0.8690
0.1514 1320 - 0.8664
0.1526 1330 - 0.8635
0.1537 1340 - 0.8603
0.1549 1350 - 0.8574
0.1560 1360 - 0.8545
0.1572 1370 - 0.8521
0.1583 1380 - 0.8497
0.1595 1390 - 0.8474
0.1606 1400 1.451 0.8453
0.1618 1410 - 0.8429
0.1629 1420 - 0.8404
0.1640 1430 - 0.8380
0.1652 1440 - 0.8357
0.1663 1450 - 0.8336
0.1675 1460 - 0.8312
0.1686 1470 - 0.8289
0.1698 1480 - 0.8262
0.1709 1490 - 0.8236
0.1721 1500 1.4177 0.8213
0.1732 1510 - 0.8189
0.1744 1520 - 0.8168
0.1755 1530 - 0.8147
0.1767 1540 - 0.8127
0.1778 1550 - 0.8107
0.1790 1560 - 0.8082
0.1801 1570 - 0.8059
0.1813 1580 - 0.8036
0.1824 1590 - 0.8015
0.1835 1600 1.3734 0.7993
0.1847 1610 - 0.7970
0.1858 1620 - 0.7948
0.1870 1630 - 0.7922
0.1881 1640 - 0.7900
0.1893 1650 - 0.7877
0.1904 1660 - 0.7852
0.1916 1670 - 0.7829
0.1927 1680 - 0.7804
0.1939 1690 - 0.7779
0.1950 1700 1.3327 0.7757
0.1962 1710 - 0.7738
0.1973 1720 - 0.7719
0.1985 1730 - 0.7700
0.1996 1740 - 0.7679
0.2008 1750 - 0.7658
0.2019 1760 - 0.7641
0.2031 1770 - 0.7621
0.2042 1780 - 0.7601
0.2053 1790 - 0.7580
0.2065 1800 1.2804 0.7558
0.2076 1810 - 0.7536
0.2088 1820 - 0.7514
0.2099 1830 - 0.7493
0.2111 1840 - 0.7473
0.2122 1850 - 0.7451
0.2134 1860 - 0.7429
0.2145 1870 - 0.7408
0.2157 1880 - 0.7389
0.2168 1890 - 0.7368
0.2180 1900 1.2255 0.7349
0.2191 1910 - 0.7328
0.2203 1920 - 0.7310
0.2214 1930 - 0.7293
0.2226 1940 - 0.7277
0.2237 1950 - 0.7259
0.2248 1960 - 0.7240
0.2260 1970 - 0.7221
0.2271 1980 - 0.7203
0.2283 1990 - 0.7184
0.2294 2000 1.2635 0.7165
0.2306 2010 - 0.7150
0.2317 2020 - 0.7135
0.2329 2030 - 0.7117
0.2340 2040 - 0.7099
0.2352 2050 - 0.7084
0.2363 2060 - 0.7068
0.2375 2070 - 0.7054
0.2386 2080 - 0.7037
0.2398 2090 - 0.7023
0.2409 2100 1.1912 0.7009
0.2421 2110 - 0.6991
0.2432 2120 - 0.6974
0.2444 2130 - 0.6962
0.2455 2140 - 0.6950
0.2466 2150 - 0.6938
0.2478 2160 - 0.6922
0.2489 2170 - 0.6909
0.2501 2180 - 0.6897
0.2512 2190 - 0.6884
0.2524 2200 1.2144 0.6868
0.2535 2210 - 0.6856
0.2547 2220 - 0.6843
0.2558 2230 - 0.6829
0.2570 2240 - 0.6817
0.2581 2250 - 0.6804
0.2593 2260 - 0.6789
0.2604 2270 - 0.6775
0.2616 2280 - 0.6763
0.2627 2290 - 0.6751
0.2639 2300 1.1498 0.6739
0.2650 2310 - 0.6725
0.2661 2320 - 0.6711
0.2673 2330 - 0.6698
0.2684 2340 - 0.6684
0.2696 2350 - 0.6666
0.2707 2360 - 0.6653
0.2719 2370 - 0.6638
0.2730 2380 - 0.6621
0.2742 2390 - 0.6609
0.2753 2400 1.1446 0.6596
0.2765 2410 - 0.6582
0.2776 2420 - 0.6568
0.2788 2430 - 0.6553
0.2799 2440 - 0.6541
0.2811 2450 - 0.6527
0.2822 2460 - 0.6513
0.2834 2470 - 0.6496
0.2845 2480 - 0.6483
0.2856 2490 - 0.6475
0.2868 2500 1.1309 0.6465
0.2879 2510 - 0.6455
0.2891 2520 - 0.6447
0.2902 2530 - 0.6437
0.2914 2540 - 0.6428
0.2925 2550 - 0.6415
0.2937 2560 - 0.6403
0.2948 2570 - 0.6392
0.2960 2580 - 0.6381
0.2971 2590 - 0.6371
0.2983 2600 1.1006 0.6358
0.2994 2610 - 0.6348
0.3006 2620 - 0.6340
0.3017 2630 - 0.6330
0.3029 2640 - 0.6319
0.3040 2650 - 0.6308
0.3052 2660 - 0.6300
0.3063 2670 - 0.6291
0.3074 2680 - 0.6280
0.3086 2690 - 0.6268
0.3097 2700 1.0772 0.6254
0.3109 2710 - 0.6243
0.3120 2720 - 0.6232
0.3132 2730 - 0.6224
0.3143 2740 - 0.6215
0.3155 2750 - 0.6205
0.3166 2760 - 0.6194
0.3178 2770 - 0.6183
0.3189 2780 - 0.6171
0.3201 2790 - 0.6160
0.3212 2800 1.0648 0.6153
0.3224 2810 - 0.6141
0.3235 2820 - 0.6129
0.3247 2830 - 0.6119
0.3258 2840 - 0.6109
0.3269 2850 - 0.6099
0.3281 2860 - 0.6088
0.3292 2870 - 0.6079
0.3304 2880 - 0.6073
0.3315 2890 - 0.6063
0.3327 2900 1.0398 0.6054
0.3338 2910 - 0.6044
0.3350 2920 - 0.6033
0.3361 2930 - 0.6022
0.3373 2940 - 0.6012
0.3384 2950 - 0.6003
0.3396 2960 - 0.5993
0.3407 2970 - 0.5986
0.3419 2980 - 0.5978
0.3430 2990 - 0.5967
0.3442 3000 1.0256 0.5959
0.3453 3010 - 0.5947
0.3464 3020 - 0.5937
0.3476 3030 - 0.5929
0.3487 3040 - 0.5920
0.3499 3050 - 0.5908
0.3510 3060 - 0.5897
0.3522 3070 - 0.5888
0.3533 3080 - 0.5882
0.3545 3090 - 0.5874
0.3556 3100 1.0489 0.5868
0.3568 3110 - 0.5860
0.3579 3120 - 0.5854
0.3591 3130 - 0.5839
0.3602 3140 - 0.5830
0.3614 3150 - 0.5822
0.3625 3160 - 0.5814
0.3637 3170 - 0.5808
0.3648 3180 - 0.5802
0.3660 3190 - 0.5794
0.3671 3200 1.038 0.5788
0.3682 3210 - 0.5778
0.3694 3220 - 0.5770
0.3705 3230 - 0.5763
0.3717 3240 - 0.5752
0.3728 3250 - 0.5745
0.3740 3260 - 0.5737
0.3751 3270 - 0.5728
0.3763 3280 - 0.5720
0.3774 3290 - 0.5713
0.3786 3300 1.0058 0.5707
0.3797 3310 - 0.5700
0.3809 3320 - 0.5690
0.3820 3330 - 0.5681
0.3832 3340 - 0.5673
0.3843 3350 - 0.5669
0.3855 3360 - 0.5667
0.3866 3370 - 0.5665
0.3877 3380 - 0.5659
0.3889 3390 - 0.5650
0.3900 3400 1.0413 0.5645
0.3912 3410 - 0.5641
0.3923 3420 - 0.5635
0.3935 3430 - 0.5629
0.3946 3440 - 0.5622
0.3958 3450 - 0.5617
0.3969 3460 - 0.5614
0.3981 3470 - 0.5607
0.3992 3480 - 0.5603
0.4004 3490 - 0.5598
0.4015 3500 0.938 0.5596
0.4027 3510 - 0.5589
0.4038 3520 - 0.5581
0.4050 3530 - 0.5571
0.4061 3540 - 0.5563
0.4073 3550 - 0.5557
0.4084 3560 - 0.5551
0.4095 3570 - 0.5546
0.4107 3580 - 0.5541
0.4118 3590 - 0.5535
0.4130 3600 0.955 0.5528
0.4141 3610 - 0.5522
0.4153 3620 - 0.5516
0.4164 3630 - 0.5509
0.4176 3640 - 0.5503
0.4187 3650 - 0.5495
0.4199 3660 - 0.5490
0.4210 3670 - 0.5481
0.4222 3680 - 0.5475
0.4233 3690 - 0.5467
0.4245 3700 0.9387 0.5463
0.4256 3710 - 0.5459
0.4268 3720 - 0.5452
0.4279 3730 - 0.5448
0.4290 3740 - 0.5443
0.4302 3750 - 0.5440
0.4313 3760 - 0.5435
0.4325 3770 - 0.5430
0.4336 3780 - 0.5423
0.4348 3790 - 0.5418
0.4359 3800 0.9672 0.5415
0.4371 3810 - 0.5413
0.4382 3820 - 0.5410
0.4394 3830 - 0.5406
0.4405 3840 - 0.5403
0.4417 3850 - 0.5397
0.4428 3860 - 0.5394
0.4440 3870 - 0.5386
0.4451 3880 - 0.5378
0.4463 3890 - 0.5370
0.4474 3900 0.926 0.5360
0.4485 3910 - 0.5351
0.4497 3920 - 0.5346
0.4508 3930 - 0.5343
0.4520 3940 - 0.5339
0.4531 3950 - 0.5337
0.4543 3960 - 0.5334
0.4554 3970 - 0.5330
0.4566 3980 - 0.5327
0.4577 3990 - 0.5324
0.4589 4000 0.867 0.5319
0.4600 4010 - 0.5313
0.4612 4020 - 0.5308
0.4623 4030 - 0.5300
0.4635 4040 - 0.5293
0.4646 4050 - 0.5287
0.4658 4060 - 0.5284
0.4669 4070 - 0.5281
0.4681 4080 - 0.5277
0.4692 4090 - 0.5272
0.4703 4100 0.916 0.5267
0.4715 4110 - 0.5260
0.4726 4120 - 0.5252
0.4738 4130 - 0.5246
0.4749 4140 - 0.5239
0.4761 4150 - 0.5232
0.4772 4160 - 0.5225
0.4784 4170 - 0.5221
0.4795 4180 - 0.5216
0.4807 4190 - 0.5211
0.4818 4200 0.9667 0.5206
0.4830 4210 - 0.5204
0.4841 4220 - 0.5200
0.4853 4230 - 0.5192
0.4864 4240 - 0.5187
0.4876 4250 - 0.5185
0.4887 4260 - 0.5179
0.4898 4270 - 0.5173
0.4910 4280 - 0.5170
0.4921 4290 - 0.5165
0.4933 4300 0.9276 0.5160
0.4944 4310 - 0.5154
0.4956 4320 - 0.5150
0.4967 4330 - 0.5144
0.4979 4340 - 0.5141
0.4990 4350 - 0.5139
0.5002 4360 - 0.5138
0.5013 4370 - 0.5136
0.5025 4380 - 0.5133
0.5036 4390 - 0.5129
0.5048 4400 0.9331 0.5126
0.5059 4410 - 0.5123
0.5071 4420 - 0.5117
0.5082 4430 - 0.5113
0.5093 4440 - 0.5108
0.5105 4450 - 0.5106
0.5116 4460 - 0.5106
0.5128 4470 - 0.5106
0.5139 4480 - 0.5104
0.5151 4490 - 0.5102
0.5162 4500 0.907 0.5097
0.5174 4510 - 0.5092
0.5185 4520 - 0.5086
0.5197 4530 - 0.5082
0.5208 4540 - 0.5079
0.5220 4550 - 0.5075
0.5231 4560 - 0.5071
0.5243 4570 - 0.5067
0.5254 4580 - 0.5066
0.5266 4590 - 0.5062
0.5277 4600 0.913 0.5059
0.5289 4610 - 0.5056
0.5300 4620 - 0.5052
0.5311 4630 - 0.5046
0.5323 4640 - 0.5039
0.5334 4650 - 0.5033
0.5346 4660 - 0.5030
0.5357 4670 - 0.5028
0.5369 4680 - 0.5027
0.5380 4690 - 0.5023
0.5392 4700 0.9047 0.5020
0.5403 4710 - 0.5018
0.5415 4720 - 0.5015
0.5426 4730 - 0.5009
0.5438 4740 - 0.5003
0.5449 4750 - 0.4997
0.5461 4760 - 0.4991
0.5472 4770 - 0.4984
0.5484 4780 - 0.4980
0.5495 4790 - 0.4980
0.5506 4800 0.887 0.4979
0.5518 4810 - 0.4975
0.5529 4820 - 0.4973
0.5541 4830 - 0.4969
0.5552 4840 - 0.4966
0.5564 4850 - 0.4964
0.5575 4860 - 0.4964
0.5587 4870 - 0.4960
0.5598 4880 - 0.4957
0.5610 4890 - 0.4955
0.5621 4900 0.8645 0.4952
0.5633 4910 - 0.4950
0.5644 4920 - 0.4952
0.5656 4930 - 0.4949
0.5667 4940 - 0.4943
0.5679 4950 - 0.4938
0.5690 4960 - 0.4936
0.5702 4970 - 0.4933
0.5713 4980 - 0.4931
0.5724 4990 - 0.4929
0.5736 5000 0.8348 0.4924
0.5747 5010 - 0.4921
0.5759 5020 - 0.4915
0.5770 5030 - 0.4911
0.5782 5040 - 0.4909
0.5793 5050 - 0.4905
0.5805 5060 - 0.4900
0.5816 5070 - 0.4892
0.5828 5080 - 0.4886
0.5839 5090 - 0.4883
0.5851 5100 0.871 0.4879
0.5862 5110 - 0.4877
0.5874 5120 - 0.4874
0.5885 5130 - 0.4870
0.5897 5140 - 0.4867
0.5908 5150 - 0.4864
0.5919 5160 - 0.4862
0.5931 5170 - 0.4860
0.5942 5180 - 0.4857
0.5954 5190 - 0.4855
0.5965 5200 0.8522 0.4850
0.5977 5210 - 0.4846
0.5988 5220 - 0.4844
0.6000 5230 - 0.4842
0.6011 5240 - 0.4837
0.6023 5250 - 0.4835
0.6034 5260 - 0.4831
0.6046 5270 - 0.4826
0.6057 5280 - 0.4822
0.6069 5290 - 0.4822
0.6080 5300 0.869 0.4820
0.6092 5310 - 0.4818
0.6103 5320 - 0.4819
0.6114 5330 - 0.4819
0.6126 5340 - 0.4815
0.6137 5350 - 0.4813
0.6149 5360 - 0.4812
0.6160 5370 - 0.4810
0.6172 5380 - 0.4809
0.6183 5390 - 0.4806
0.6195 5400 0.8548 0.4805
0.6206 5410 - 0.4800
0.6218 5420 - 0.4798
0.6229 5430 - 0.4795
0.6241 5440 - 0.4792
0.6252 5450 - 0.4790
0.6264 5460 - 0.4790
0.6275 5470 - 0.4791
0.6287 5480 - 0.4794
0.6298 5490 - 0.4792
0.6310 5500 0.8366 0.4790
0.6321 5510 - 0.4786
0.6332 5520 - 0.4780
0.6344 5530 - 0.4773
0.6355 5540 - 0.4768
0.6367 5550 - 0.4767
0.6378 5560 - 0.4765
0.6390 5570 - 0.4765
0.6401 5580 - 0.4763
0.6413 5590 - 0.4760
0.6424 5600 0.8696 0.4757
0.6436 5610 - 0.4754
0.6447 5620 - 0.4752
0.6459 5630 - 0.4751
0.6470 5640 - 0.4747
0.6482 5650 - 0.4747
0.6493 5660 - 0.4742
0.6505 5670 - 0.4740
0.6516 5680 - 0.4736
0.6527 5690 - 0.4730
0.6539 5700 0.8302 0.4725
0.6550 5710 - 0.4723
0.6562 5720 - 0.4720
0.6573 5730 - 0.4718
0.6585 5740 - 0.4715
0.6596 5750 - 0.4714
0.6608 5760 - 0.4711
0.6619 5770 - 0.4707
0.6631 5780 - 0.4707
0.6642 5790 - 0.4703
0.6654 5800 0.8128 0.4703
0.6665 5810 - 0.4701
0.6677 5820 - 0.4699
0.6688 5830 - 0.4697
0.6700 5840 - 0.4698
0.6711 5850 - 0.4695
0.6722 5860 - 0.4691
0.6734 5870 - 0.4689
0.6745 5880 - 0.4689
0.6757 5890 - 0.4688
0.6768 5900 0.8437 0.4683
0.6780 5910 - 0.4683
0.6791 5920 - 0.4681
0.6803 5930 - 0.4678
0.6814 5940 - 0.4677
0.6826 5950 - 0.4676
0.6837 5960 - 0.4673
0.6849 5970 - 0.4668
0.6860 5980 - 0.4667
0.6872 5990 - 0.4661
0.6883 6000 0.7774 0.4657
0.6895 6010 - 0.4654
0.6906 6020 - 0.4650
0.6918 6030 - 0.4648
0.6929 6040 - 0.4646
0.6940 6050 - 0.4644
0.6952 6060 - 0.4643
0.6963 6070 - 0.4641
0.6975 6080 - 0.4640
0.6986 6090 - 0.4638
0.6998 6100 0.834 0.4637
0.7009 6110 - 0.4633
0.7021 6120 - 0.4632
0.7032 6130 - 0.4631
0.7044 6140 - 0.4628
0.7055 6150 - 0.4627
0.7067 6160 - 0.4623
0.7078 6170 - 0.4617
0.7090 6180 - 0.4615
0.7101 6190 - 0.4614
0.7113 6200 0.8118 0.4612
0.7124 6210 - 0.4612
0.7135 6220 - 0.4612
0.7147 6230 - 0.4610
0.7158 6240 - 0.4609
0.7170 6250 - 0.4610
0.7181 6260 - 0.4611
0.7193 6270 - 0.4607
0.7204 6280 - 0.4599
0.7216 6290 - 0.4598
0.7227 6300 0.7884 0.4600
0.7239 6310 - 0.4599
0.7250 6320 - 0.4600
0.7262 6330 - 0.4601
0.7273 6340 - 0.4603
0.7285 6350 - 0.4603
0.7296 6360 - 0.4598
0.7308 6370 - 0.4597
0.7319 6380 - 0.4596
0.7331 6390 - 0.4594
0.7342 6400 0.8092 0.4590
0.7353 6410 - 0.4588
0.7365 6420 - 0.4585
0.7376 6430 - 0.4584
0.7388 6440 - 0.4580
0.7399 6450 - 0.4574
0.7411 6460 - 0.4570
0.7422 6470 - 0.4566
0.7434 6480 - 0.4563
0.7445 6490 - 0.4560
0.7457 6500 0.8195 0.4557
0.7468 6510 - 0.4556
0.7480 6520 - 0.4554
0.7491 6530 - 0.4551
0.7503 6540 - 0.4548
0.7514 6550 - 0.4545
0.7526 6560 - 0.4543
0.7537 6570 - 0.4541
0.7548 6580 - 0.4540
0.7560 6590 - 0.4538
0.7571 6600 0.8163 0.4535
0.7583 6610 - 0.4533
0.7594 6620 - 0.4536
0.7606 6630 - 0.4535
0.7617 6640 - 0.4533
0.7629 6650 - 0.4532
0.7640 6660 - 0.4531
0.7652 6670 - 0.4531
0.7663 6680 - 0.4530
0.7675 6690 - 0.4528
0.7686 6700 0.8091 0.4527
0.7698 6710 - 0.4527
0.7709 6720 - 0.4526
0.7721 6730 - 0.4525
0.7732 6740 - 0.4524
0.7743 6750 - 0.4521
0.7755 6760 - 0.4517
0.7766 6770 - 0.4514
0.7778 6780 - 0.4512
0.7789 6790 - 0.4514
0.7801 6800 0.8098 0.4515
0.7812 6810 - 0.4514
0.7824 6820 - 0.4511
0.7835 6830 - 0.4507
0.7847 6840 - 0.4505
0.7858 6850 - 0.4504
0.7870 6860 - 0.4503
0.7881 6870 - 0.4500
0.7893 6880 - 0.4498
0.7904 6890 - 0.4495
0.7916 6900 0.7857 0.4491
0.7927 6910 - 0.4490
0.7939 6920 - 0.4488
0.7950 6930 - 0.4488
0.7961 6940 - 0.4488
0.7973 6950 - 0.4487
0.7984 6960 - 0.4484
0.7996 6970 - 0.4482
0.8007 6980 - 0.4483
0.8019 6990 - 0.4481
0.8030 7000 0.7817 0.4477
0.8042 7010 - 0.4476
0.8053 7020 - 0.4471
0.8065 7030 - 0.4469
0.8076 7040 - 0.4468
0.8088 7050 - 0.4465
0.8099 7060 - 0.4460
0.8111 7070 - 0.4458
0.8122 7080 - 0.4458
0.8134 7090 - 0.4454
0.8145 7100 0.779 0.4452
0.8156 7110 - 0.4449
0.8168 7120 - 0.4448
0.8179 7130 - 0.4446
0.8191 7140 - 0.4442
0.8202 7150 - 0.4442
0.8214 7160 - 0.4441
0.8225 7170 - 0.4440
0.8237 7180 - 0.4437
0.8248 7190 - 0.4434
0.8260 7200 0.7807 0.4434
0.8271 7210 - 0.4435
0.8283 7220 - 0.4433
0.8294 7230 - 0.4431
0.8306 7240 - 0.4430
0.8317 7250 - 0.4428
0.8329 7260 - 0.4426
0.8340 7270 - 0.4424
0.8351 7280 - 0.4428
0.8363 7290 - 0.4426
0.8374 7300 0.7724 0.4423
0.8386 7310 - 0.4419
0.8397 7320 - 0.4418
0.8409 7330 - 0.4417
0.8420 7340 - 0.4415
0.8432 7350 - 0.4413
0.8443 7360 - 0.4409
0.8455 7370 - 0.4406
0.8466 7380 - 0.4405
0.8478 7390 - 0.4400
0.8489 7400 0.7898 0.4393
0.8501 7410 - 0.4389
0.8512 7420 - 0.4384
0.8524 7430 - 0.4381
0.8535 7440 - 0.4380
0.8547 7450 - 0.4380
0.8558 7460 - 0.4379
0.8569 7470 - 0.4377
0.8581 7480 - 0.4377
0.8592 7490 - 0.4376
0.8604 7500 0.8009 0.4375
0.8615 7510 - 0.4371
0.8627 7520 - 0.4369
0.8638 7530 - 0.4365
0.8650 7540 - 0.4362
0.8661 7550 - 0.4359
0.8673 7560 - 0.4357
0.8684 7570 - 0.4355
0.8696 7580 - 0.4351
0.8707 7590 - 0.4347
0.8719 7600 0.7847 0.4346
0.8730 7610 - 0.4346
0.8742 7620 - 0.4344
0.8753 7630 - 0.4343
0.8764 7640 - 0.4338
0.8776 7650 - 0.4336
0.8787 7660 - 0.4332
0.8799 7670 - 0.4331
0.8810 7680 - 0.4329
0.8822 7690 - 0.4326
0.8833 7700 0.7668 0.4324
0.8845 7710 - 0.4325
0.8856 7720 - 0.4327
0.8868 7730 - 0.4329
0.8879 7740 - 0.4328
0.8891 7750 - 0.4325
0.8902 7760 - 0.4325
0.8914 7770 - 0.4326
0.8925 7780 - 0.4324
0.8937 7790 - 0.4322
0.8948 7800 0.7987 0.4320
0.8960 7810 - 0.4319
0.8971 7820 - 0.4318
0.8982 7830 - 0.4315
0.8994 7840 - 0.4312
0.9005 7850 - 0.4308
0.9017 7860 - 0.4308
0.9028 7870 - 0.4309
0.9040 7880 - 0.4306
0.9051 7890 - 0.4305
0.9063 7900 0.7691 0.4305
0.9074 7910 - 0.4305
0.9086 7920 - 0.4308
0.9097 7930 - 0.4309
0.9109 7940 - 0.4309
0.9120 7950 - 0.4305
0.9132 7960 - 0.4297
0.9143 7970 - 0.4294
0.9155 7980 - 0.4292
0.9166 7990 - 0.4292
0.9177 8000 0.7828 0.4289
0.9189 8010 - 0.4288
0.9200 8020 - 0.4289
0.9212 8030 - 0.4285
0.9223 8040 - 0.4286
0.9235 8050 - 0.4289
0.9246 8060 - 0.4288
0.9258 8070 - 0.4290
0.9269 8080 - 0.4289
0.9281 8090 - 0.4287
0.9292 8100 0.7544 0.4288
0.9304 8110 - 0.4284
0.9315 8120 - 0.4287
0.9327 8130 - 0.4289
0.9338 8140 - 0.4293
0.9350 8150 - 0.4292
0.9361 8160 - 0.4289
0.9372 8170 - 0.4286
0.9384 8180 - 0.4280
0.9395 8190 - 0.4281
0.9407 8200 0.7502 0.4281
0.9418 8210 - 0.4278
0.9430 8220 - 0.4276
0.9441 8230 - 0.4274
0.9453 8240 - 0.4270
0.9464 8250 - 0.4267
0.9476 8260 - 0.4263
0.9487 8270 - 0.4261
0.9499 8280 - 0.4257
0.9510 8290 - 0.4254
0.9522 8300 0.7818 0.4255
0.9533 8310 - 0.4255
0.9545 8320 - 0.4254
0.9556 8330 - 0.4252
0.9568 8340 - 0.4249
0.9579 8350 - 0.4249
0.9590 8360 - 0.4248
0.9602 8370 - 0.4249
0.9613 8380 - 0.4248
0.9625 8390 - 0.4246
0.9636 8400 0.7606 0.4243
0.9648 8410 - 0.4242
0.9659 8420 - 0.4240
0.9671 8430 - 0.4239
0.9682 8440 - 0.4238
0.9694 8450 - 0.4238
0.9705 8460 - 0.4237
0.9717 8470 - 0.4236
0.9728 8480 - 0.4232
0.9740 8490 - 0.4229
0.9751 8500 0.7416 0.4227
0.9763 8510 - 0.4226
0.9774 8520 - 0.4220
0.9785 8530 - 0.4218
0.9797 8540 - 0.4217
0.9808 8550 - 0.4217
0.9820 8560 - 0.4215
0.9831 8570 - 0.4216
0.9843 8580 - 0.4217
0.9854 8590 - 0.4216
0.9866 8600 0.748 0.4217
0.9877 8610 - 0.4215
0.9889 8620 - 0.4216
0.9900 8630 - 0.4218
0.9912 8640 - 0.4218
0.9923 8650 - 0.4219
0.9935 8660 - 0.4217
0.9946 8670 - 0.4217
0.9958 8680 - 0.4214
0.9969 8690 - 0.4210
0.9980 8700 0.7553 0.4205
0.9992 8710 - 0.4200
1.0003 8720 - 0.4199
1.0015 8730 - 0.4199
1.0026 8740 - 0.4199
1.0038 8750 - 0.4198
1.0049 8760 - 0.4200
1.0061 8770 - 0.4198
1.0072 8780 - 0.4195
1.0084 8790 - 0.4194
1.0095 8800 0.7202 0.4191
1.0107 8810 - 0.4190
1.0118 8820 - 0.4188
1.0130 8830 - 0.4188
1.0141 8840 - 0.4192
1.0153 8850 - 0.4190
1.0164 8860 - 0.4191
1.0176 8870 - 0.4190
1.0187 8880 - 0.4192
1.0198 8890 - 0.4190
1.0210 8900 0.7567 0.4189
1.0221 8910 - 0.4188
1.0233 8920 - 0.4189
1.0244 8930 - 0.4188
1.0256 8940 - 0.4187
1.0267 8950 - 0.4183
1.0279 8960 - 0.4182
1.0290 8970 - 0.4182
1.0302 8980 - 0.4184
1.0313 8990 - 0.4181
1.0325 9000 0.7345 0.4177
1.0336 9010 - 0.4173
1.0348 9020 - 0.4171
1.0359 9030 - 0.4172
1.0371 9040 - 0.4171
1.0382 9050 - 0.4172
1.0393 9060 - 0.4172
1.0405 9070 - 0.4170
1.0416 9080 - 0.4165
1.0428 9090 - 0.4162
1.0439 9100 0.7344 0.4162
1.0451 9110 - 0.4160
1.0462 9120 - 0.4158
1.0474 9130 - 0.4157
1.0485 9140 - 0.4157
1.0497 9150 - 0.4156
1.0508 9160 - 0.4153
1.0520 9170 - 0.4153
1.0531 9180 - 0.4154
1.0543 9190 - 0.4154
1.0554 9200 0.7233 0.4157
1.0566 9210 - 0.4157
1.0577 9220 - 0.4156
1.0589 9230 - 0.4155
1.0600 9240 - 0.4153
1.0611 9250 - 0.4154
1.0623 9260 - 0.4155
1.0634 9270 - 0.4154
1.0646 9280 - 0.4151
1.0657 9290 - 0.4149
1.0669 9300 0.7442 0.4148
1.0680 9310 - 0.4144
1.0692 9320 - 0.4143
1.0703 9330 - 0.4141
1.0715 9340 - 0.4140
1.0726 9350 - 0.4138
1.0738 9360 - 0.4136
1.0749 9370 - 0.4133
1.0761 9380 - 0.4132
1.0772 9390 - 0.4130
1.0784 9400 0.722 0.4129
1.0795 9410 - 0.4131
1.0806 9420 - 0.4132
1.0818 9430 - 0.4133
1.0829 9440 - 0.4134
1.0841 9450 - 0.4134
1.0852 9460 - 0.4133
1.0864 9470 - 0.4132
1.0875 9480 - 0.4132
1.0887 9490 - 0.4134
1.0898 9500 0.7433 0.4133
1.0910 9510 - 0.4133
1.0921 9520 - 0.4133
1.0933 9530 - 0.4132
1.0944 9540 - 0.4131
1.0956 9550 - 0.4130
1.0967 9560 - 0.4130
1.0979 9570 - 0.4126
1.0990 9580 - 0.4125
1.1001 9590 - 0.4121
1.1013 9600 0.746 0.4119
1.1024 9610 - 0.4117
1.1036 9620 - 0.4112
1.1047 9630 - 0.4109
1.1059 9640 - 0.4106
1.1070 9650 - 0.4101
1.1082 9660 - 0.4101
1.1093 9670 - 0.4102
1.1105 9680 - 0.4102
1.1116 9690 - 0.4101
1.1128 9700 0.7447 0.4099
1.1139 9710 - 0.4100
1.1151 9720 - 0.4098
1.1162 9730 - 0.4097
1.1174 9740 - 0.4094
1.1185 9750 - 0.4097
1.1197 9760 - 0.4096
1.1208 9770 - 0.4096
1.1219 9780 - 0.4097
1.1231 9790 - 0.4097
1.1242 9800 0.7234 0.4094
1.1254 9810 - 0.4090
1.1265 9820 - 0.4090
1.1277 9830 - 0.4091
1.1288 9840 - 0.4091
1.1300 9850 - 0.4090
1.1311 9860 - 0.4088
1.1323 9870 - 0.4088
1.1334 9880 - 0.4085
1.1346 9890 - 0.4085
1.1357 9900 0.7054 0.4084
1.1369 9910 - 0.4087
1.1380 9920 - 0.4089
1.1392 9930 - 0.4089
1.1403 9940 - 0.4088
1.1414 9950 - 0.4091
1.1426 9960 - 0.4088
1.1437 9970 - 0.4086
1.1449 9980 - 0.4084
1.1460 9990 - 0.4089
1.1472 10000 0.7071 0.4088
1.1483 10010 - 0.4086
1.1495 10020 - 0.4081
1.1506 10030 - 0.4079
1.1518 10040 - 0.4079
1.1529 10050 - 0.4081
1.1541 10060 - 0.4081
1.1552 10070 - 0.4080
1.1564 10080 - 0.4079
1.1575 10090 - 0.4078
1.1587 10100 0.7289 0.4075
1.1598 10110 - 0.4072
1.1609 10120 - 0.4070
1.1621 10130 - 0.4070
1.1632 10140 - 0.4074
1.1644 10150 - 0.4074
1.1655 10160 - 0.4073
1.1667 10170 - 0.4073
1.1678 10180 - 0.4072
1.1690 10190 - 0.4073
1.1701 10200 0.758 0.4071
1.1713 10210 - 0.4071
1.1724 10220 - 0.4071
1.1736 10230 - 0.4068
1.1747 10240 - 0.4063
1.1759 10250 - 0.4062
1.1770 10260 - 0.4064
1.1782 10270 - 0.4065
1.1793 10280 - 0.4063
1.1805 10290 - 0.4065
1.1816 10300 0.7322 0.4066
1.1827 10310 - 0.4065
1.1839 10320 - 0.4065
1.1850 10330 - 0.4061
1.1862 10340 - 0.4060
1.1873 10350 - 0.4057
1.1885 10360 - 0.4056
1.1896 10370 - 0.4056
1.1908 10380 - 0.4059
1.1919 10390 - 0.4061
1.1931 10400 0.6948 0.4059
1.1942 10410 - 0.4059
1.1954 10420 - 0.4060
1.1965 10430 - 0.4058
1.1977 10440 - 0.4057
1.1988 10450 - 0.4056
1.2000 10460 - 0.4056
1.2011 10470 - 0.4056
1.2022 10480 - 0.4057
1.2034 10490 - 0.4056
1.2045 10500 0.7185 0.4055
1.2057 10510 - 0.4056
1.2068 10520 - 0.4054
1.2080 10530 - 0.4053
1.2091 10540 - 0.4051
1.2103 10550 - 0.4050
1.2114 10560 - 0.4051
1.2126 10570 - 0.4052
1.2137 10580 - 0.4053
1.2149 10590 - 0.4053
1.2160 10600 0.7039 0.4053
1.2172 10610 - 0.4054
1.2183 10620 - 0.4051
1.2195 10630 - 0.4050
1.2206 10640 - 0.4048
1.2218 10650 - 0.4044
1.2229 10660 - 0.4046
1.2240 10670 - 0.4044
1.2252 10680 - 0.4041
1.2263 10690 - 0.4039
1.2275 10700 0.6969 0.4037
1.2286 10710 - 0.4037
1.2298 10720 - 0.4035
1.2309 10730 - 0.4036
1.2321 10740 - 0.4035
1.2332 10750 - 0.4038
1.2344 10760 - 0.4038
1.2355 10770 - 0.4037
1.2367 10780 - 0.4037
1.2378 10790 - 0.4037
1.2390 10800 0.6921 0.4038
1.2401 10810 - 0.4039
1.2413 10820 - 0.4038
1.2424 10830 - 0.4037
1.2435 10840 - 0.4040
1.2447 10850 - 0.4042
1.2458 10860 - 0.4044
1.2470 10870 - 0.4043
1.2481 10880 - 0.4043
1.2493 10890 - 0.4044
1.2504 10900 0.728 0.4042
1.2516 10910 - 0.4044
1.2527 10920 - 0.4043
1.2539 10930 - 0.4039
1.2550 10940 - 0.4038
1.2562 10950 - 0.4037
1.2573 10960 - 0.4035
1.2585 10970 - 0.4032
1.2596 10980 - 0.4024
1.2608 10990 - 0.4019
1.2619 11000 0.713 0.4018
1.2630 11010 - 0.4015
1.2642 11020 - 0.4015
1.2653 11030 - 0.4014
1.2665 11040 - 0.4015
1.2676 11050 - 0.4014
1.2688 11060 - 0.4013
1.2699 11070 - 0.4015
1.2711 11080 - 0.4016
1.2722 11090 - 0.4017
1.2734 11100 0.668 0.4017
1.2745 11110 - 0.4016
1.2757 11120 - 0.4016
1.2768 11130 - 0.4019
1.2780 11140 - 0.4021
1.2791 11150 - 0.4019
1.2803 11160 - 0.4017
1.2814 11170 - 0.4017
1.2826 11180 - 0.4018
1.2837 11190 - 0.4013
1.2848 11200 0.7101 0.4011
1.2860 11210 - 0.4011
1.2871 11220 - 0.4014
1.2883 11230 - 0.4015
1.2894 11240 - 0.4010
1.2906 11250 - 0.4012
1.2917 11260 - 0.4013
1.2929 11270 - 0.4010
1.2940 11280 - 0.4006
1.2952 11290 - 0.4005
1.2963 11300 0.6963 0.4004
1.2975 11310 - 0.4003
1.2986 11320 - 0.4004
1.2998 11330 - 0.4003
1.3009 11340 - 0.3999
1.3021 11350 - 0.3997
1.3032 11360 - 0.3996
1.3043 11370 - 0.3997
1.3055 11380 - 0.3996
1.3066 11390 - 0.3994
1.3078 11400 0.6706 0.3993
1.3089 11410 - 0.3991
1.3101 11420 - 0.3990
1.3112 11430 - 0.3990
1.3124 11440 - 0.3987
1.3135 11450 - 0.3981
1.3147 11460 - 0.3978
1.3158 11470 - 0.3975
1.3170 11480 - 0.3974
1.3181 11490 - 0.3974
1.3193 11500 0.6962 0.3974
1.3204 11510 - 0.3975
1.3216 11520 - 0.3975
1.3227 11530 - 0.3976
1.3238 11540 - 0.3977
1.3250 11550 - 0.3975
1.3261 11560 - 0.3974
1.3273 11570 - 0.3973
1.3284 11580 - 0.3971
1.3296 11590 - 0.3969
1.3307 11600 0.7083 0.3970
1.3319 11610 - 0.3970
1.3330 11620 - 0.3971
1.3342 11630 - 0.3973
1.3353 11640 - 0.3975
1.3365 11650 - 0.3973
1.3376 11660 - 0.3973
1.3388 11670 - 0.3973
1.3399 11680 - 0.3976
1.3411 11690 - 0.3976
1.3422 11700 0.6757 0.3976
1.3434 11710 - 0.3975
1.3445 11720 - 0.3973
1.3456 11730 - 0.3971
1.3468 11740 - 0.3963
1.3479 11750 - 0.3964
1.3491 11760 - 0.3965
1.3502 11770 - 0.3967
1.3514 11780 - 0.3966
1.3525 11790 - 0.3964
1.3537 11800 0.7091 0.3965
1.3548 11810 - 0.3964
1.3560 11820 - 0.3964
1.3571 11830 - 0.3963
1.3583 11840 - 0.3962
1.3594 11850 - 0.3961
1.3606 11860 - 0.3956
1.3617 11870 - 0.3956
1.3629 11880 - 0.3961
1.3640 11890 - 0.3963
1.3651 11900 0.6977 0.3962
1.3663 11910 - 0.3958
1.3674 11920 - 0.3960
1.3686 11930 - 0.3963
1.3697 11940 - 0.3964
1.3709 11950 - 0.3961
1.3720 11960 - 0.3960
1.3732 11970 - 0.3958
1.3743 11980 - 0.3954
1.3755 11990 - 0.3948
1.3766 12000 0.7003 0.3944
1.3778 12010 - 0.3940
1.3789 12020 - 0.3940
1.3801 12030 - 0.3938
1.3812 12040 - 0.3939
1.3824 12050 - 0.3943
1.3835 12060 - 0.3946
1.3847 12070 - 0.3947
1.3858 12080 - 0.3943
1.3869 12090 - 0.3940
1.3881 12100 0.679 0.3943
1.3892 12110 - 0.3945
1.3904 12120 - 0.3946
1.3915 12130 - 0.3944
1.3927 12140 - 0.3941
1.3938 12150 - 0.3941
1.3950 12160 - 0.3941
1.3961 12170 - 0.3939
1.3973 12180 - 0.3939
1.3984 12190 - 0.3939
1.3996 12200 0.692 0.3938
1.4007 12210 - 0.3937
1.4019 12220 - 0.3932
1.4030 12230 - 0.3928
1.4042 12240 - 0.3925
1.4053 12250 - 0.3922
1.4064 12260 - 0.3924
1.4076 12270 - 0.3923
1.4087 12280 - 0.3926
1.4099 12290 - 0.3924
1.4110 12300 0.6677 0.3925
1.4122 12310 - 0.3926
1.4133 12320 - 0.3927
1.4145 12330 - 0.3928
1.4156 12340 - 0.3928
1.4168 12350 - 0.3929
1.4179 12360 - 0.3933
1.4191 12370 - 0.3934
1.4202 12380 - 0.3933
1.4214 12390 - 0.3933
1.4225 12400 0.6892 0.3930
1.4237 12410 - 0.3928
1.4248 12420 - 0.3928
1.4259 12430 - 0.3927
1.4271 12440 - 0.3927
1.4282 12450 - 0.3924
1.4294 12460 - 0.3924
1.4305 12470 - 0.3922
1.4317 12480 - 0.3920
1.4328 12490 - 0.3919
1.4340 12500 0.7016 0.3917
1.4351 12510 - 0.3914
1.4363 12520 - 0.3912
1.4374 12530 - 0.3914
1.4386 12540 - 0.3915
1.4397 12550 - 0.3915
1.4409 12560 - 0.3915
1.4420 12570 - 0.3912
1.4432 12580 - 0.3910
1.4443 12590 - 0.3910
1.4455 12600 0.68 0.3907
1.4466 12610 - 0.3906
1.4477 12620 - 0.3904
1.4489 12630 - 0.3903
1.4500 12640 - 0.3902
1.4512 12650 - 0.3899
1.4523 12660 - 0.3898
1.4535 12670 - 0.3898
1.4546 12680 - 0.3897
1.4558 12690 - 0.3896
1.4569 12700 0.681 0.3894
1.4581 12710 - 0.3892
1.4592 12720 - 0.3892
1.4604 12730 - 0.3893
1.4615 12740 - 0.3896
1.4627 12750 - 0.3898
1.4638 12760 - 0.3900
1.4650 12770 - 0.3899
1.4661 12780 - 0.3898
1.4672 12790 - 0.3899
1.4684 12800 0.6816 0.3901
1.4695 12810 - 0.3901
1.4707 12820 - 0.3901
1.4718 12830 - 0.3898
1.4730 12840 - 0.3897
1.4741 12850 - 0.3897
1.4753 12860 - 0.3895
1.4764 12870 - 0.3896
1.4776 12880 - 0.3895
1.4787 12890 - 0.3896
1.4799 12900 0.6635 0.3897
1.4810 12910 - 0.3897
1.4822 12920 - 0.3899
1.4833 12930 - 0.3900
1.4845 12940 - 0.3897
1.4856 12950 - 0.3898
1.4868 12960 - 0.3899
1.4879 12970 - 0.3898
1.4890 12980 - 0.3898
1.4902 12990 - 0.3894
1.4913 13000 0.6698 0.3892
1.4925 13010 - 0.3892
1.4936 13020 - 0.3894
1.4948 13030 - 0.3893
1.4959 13040 - 0.3894
1.4971 13050 - 0.3893
1.4982 13060 - 0.3894
1.4994 13070 - 0.3893
1.5005 13080 - 0.3895
1.5017 13090 - 0.3895
1.5028 13100 0.6757 0.3898
1.5040 13110 - 0.3898
1.5051 13120 - 0.3897
1.5063 13130 - 0.3897
1.5074 13140 - 0.3897
1.5085 13150 - 0.3899
1.5097 13160 - 0.3901
1.5108 13170 - 0.3901
1.5120 13180 - 0.3903
1.5131 13190 - 0.3901
1.5143 13200 0.6483 0.3901
1.5154 13210 - 0.3904
1.5166 13220 - 0.3904
1.5177 13230 - 0.3903
1.5189 13240 - 0.3900
1.5200 13250 - 0.3898
1.5212 13260 - 0.3894
1.5223 13270 - 0.3892
1.5235 13280 - 0.3891
1.5246 13290 - 0.3890
1.5258 13300 0.686 0.3892
1.5269 13310 - 0.3892
1.5280 13320 - 0.3892
1.5292 13330 - 0.3891
1.5303 13340 - 0.3890
1.5315 13350 - 0.3894
1.5326 13360 - 0.3895
1.5338 13370 - 0.3895
1.5349 13380 - 0.3894
1.5361 13390 - 0.3895
1.5372 13400 0.6901 0.3896
1.5384 13410 - 0.3895
1.5395 13420 - 0.3891
1.5407 13430 - 0.3891
1.5418 13440 - 0.3890
1.5430 13450 - 0.3889
1.5441 13460 - 0.3887
1.5453 13470 - 0.3885
1.5464 13480 - 0.3885
1.5476 13490 - 0.3886
1.5487 13500 0.6568 0.3887
1.5498 13510 - 0.3884
1.5510 13520 - 0.3879
1.5521 13530 - 0.3874
1.5533 13540 - 0.3870
1.5544 13550 - 0.3868
1.5556 13560 - 0.3869
1.5567 13570 - 0.3872
1.5579 13580 - 0.3873
1.5590 13590 - 0.3874
1.5602 13600 0.6665 0.3875
1.5613 13610 - 0.3876
1.5625 13620 - 0.3875
1.5636 13630 - 0.3872
1.5648 13640 - 0.3873
1.5659 13650 - 0.3872
1.5671 13660 - 0.3869
1.5682 13670 - 0.3867
1.5693 13680 - 0.3864
1.5705 13690 - 0.3861
1.5716 13700 0.6795 0.3860
1.5728 13710 - 0.3858
1.5739 13720 - 0.3858
1.5751 13730 - 0.3854
1.5762 13740 - 0.3851
1.5774 13750 - 0.3850
1.5785 13760 - 0.3849
1.5797 13770 - 0.3849
1.5808 13780 - 0.3849
1.5820 13790 - 0.3848
1.5831 13800 0.6894 0.3848
1.5843 13810 - 0.3846
1.5854 13820 - 0.3845
1.5866 13830 - 0.3847
1.5877 13840 - 0.3848
1.5888 13850 - 0.3849
1.5900 13860 - 0.3848
1.5911 13870 - 0.3846
1.5923 13880 - 0.3845
1.5934 13890 - 0.3844
1.5946 13900 0.6483 0.3845
1.5957 13910 - 0.3841
1.5969 13920 - 0.3841
1.5980 13930 - 0.3842
1.5992 13940 - 0.3842
1.6003 13950 - 0.3843
1.6015 13960 - 0.3843
1.6026 13970 - 0.3843
1.6038 13980 - 0.3844
1.6049 13990 - 0.3845
1.6061 14000 0.6856 0.3846
1.6072 14010 - 0.3845
1.6084 14020 - 0.3846
1.6095 14030 - 0.3845
1.6106 14040 - 0.3843
1.6118 14050 - 0.3842
1.6129 14060 - 0.3841
1.6141 14070 - 0.3842
1.6152 14080 - 0.3843
1.6164 14090 - 0.3845
1.6175 14100 0.6797 0.3845
1.6187 14110 - 0.3845
1.6198 14120 - 0.3844
1.6210 14130 - 0.3842
1.6221 14140 - 0.3841
1.6233 14150 - 0.3838
1.6244 14160 - 0.3836
1.6256 14170 - 0.3835
1.6267 14180 - 0.3834
1.6279 14190 - 0.3831
1.6290 14200 0.7057 0.3828
1.6301 14210 - 0.3825
1.6313 14220 - 0.3822
1.6324 14230 - 0.3821
1.6336 14240 - 0.3820
1.6347 14250 - 0.3822
1.6359 14260 - 0.3822
1.6370 14270 - 0.3822
1.6382 14280 - 0.3821
1.6393 14290 - 0.3822
1.6405 14300 0.6699 0.3827
1.6416 14310 - 0.3828
1.6428 14320 - 0.3827
1.6439 14330 - 0.3823
1.6451 14340 - 0.3822
1.6462 14350 - 0.3824
1.6474 14360 - 0.3826
1.6485 14370 - 0.3826
1.6497 14380 - 0.3827
1.6508 14390 - 0.3827
1.6519 14400 0.6615 0.3827
1.6531 14410 - 0.3828
1.6542 14420 - 0.3826
1.6554 14430 - 0.3825
1.6565 14440 - 0.3826
1.6577 14450 - 0.3830
1.6588 14460 - 0.3830
1.6600 14470 - 0.3830
1.6611 14480 - 0.3830
1.6623 14490 - 0.3830
1.6634 14500 0.6628 0.3829
1.6646 14510 - 0.3829
1.6657 14520 - 0.3829
1.6669 14530 - 0.3829
1.6680 14540 - 0.3829
1.6692 14550 - 0.3829
1.6703 14560 - 0.3830
1.6714 14570 - 0.3828
1.6726 14580 - 0.3825
1.6737 14590 - 0.3822
1.6749 14600 0.6728 0.3819
1.6760 14610 - 0.3817
1.6772 14620 - 0.3817
1.6783 14630 - 0.3815
1.6795 14640 - 0.3813
1.6806 14650 - 0.3815
1.6818 14660 - 0.3814
1.6829 14670 - 0.3814
1.6841 14680 - 0.3812
1.6852 14690 - 0.3809
1.6864 14700 0.6852 0.3808
1.6875 14710 - 0.3807
1.6887 14720 - 0.3804
1.6898 14730 - 0.3802
1.6909 14740 - 0.3799
1.6921 14750 - 0.3798
1.6932 14760 - 0.3797
1.6944 14770 - 0.3795
1.6955 14780 - 0.3797
1.6967 14790 - 0.3797
1.6978 14800 0.6585 0.3797
1.6990 14810 - 0.3797
1.7001 14820 - 0.3798
1.7013 14830 - 0.3800
1.7024 14840 - 0.3800
1.7036 14850 - 0.3798
1.7047 14860 - 0.3799
1.7059 14870 - 0.3799
1.7070 14880 - 0.3798
1.7082 14890 - 0.3801
1.7093 14900 0.6691 0.3801
1.7105 14910 - 0.3800
1.7116 14920 - 0.3798
1.7127 14930 - 0.3795
1.7139 14940 - 0.3792
1.7150 14950 - 0.3791
1.7162 14960 - 0.3790
1.7173 14970 - 0.3790
1.7185 14980 - 0.3793
1.7196 14990 - 0.3794
1.7208 15000 0.6676 0.3794
1.7219 15010 - 0.3794
1.7231 15020 - 0.3794
1.7242 15030 - 0.3793
1.7254 15040 - 0.3791
1.7265 15050 - 0.3790
1.7277 15060 - 0.3788
1.7288 15070 - 0.3787
1.7300 15080 - 0.3787
1.7311 15090 - 0.3787
1.7322 15100 0.6945 0.3785
1.7334 15110 - 0.3782
1.7345 15120 - 0.3781
1.7357 15130 - 0.3780
1.7368 15140 - 0.3782
1.7380 15150 - 0.3782
1.7391 15160 - 0.3781
1.7403 15170 - 0.3781
1.7414 15180 - 0.3781
1.7426 15190 - 0.3784
1.7437 15200 0.6697 0.3787
1.7449 15210 - 0.3790
1.7460 15220 - 0.3792
1.7472 15230 - 0.3792
1.7483 15240 - 0.3791
1.7495 15250 - 0.3791
1.7506 15260 - 0.3788
1.7517 15270 - 0.3789
1.7529 15280 - 0.3788
1.7540 15290 - 0.3788
1.7552 15300 0.6557 0.3784
1.7563 15310 - 0.3784
1.7575 15320 - 0.3784
1.7586 15330 - 0.3785
1.7598 15340 - 0.3789
1.7609 15350 - 0.3791
1.7621 15360 - 0.3791
1.7632 15370 - 0.3791
1.7644 15380 - 0.3789
1.7655 15390 - 0.3788
1.7667 15400 0.6837 0.3788
1.7678 15410 - 0.3788
1.7690 15420 - 0.3788
1.7701 15430 - 0.3787
1.7713 15440 - 0.3786
1.7724 15450 - 0.3785
1.7735 15460 - 0.3784
1.7747 15470 - 0.3780
1.7758 15480 - 0.3778
1.7770 15490 - 0.3778
1.7781 15500 0.6685 0.3779
1.7793 15510 - 0.3781
1.7804 15520 - 0.3783
1.7816 15530 - 0.3784
1.7827 15540 - 0.3782
1.7839 15550 - 0.3779
1.7850 15560 - 0.3779
1.7862 15570 - 0.3782
1.7873 15580 - 0.3786
1.7885 15590 - 0.3785
1.7896 15600 0.6521 0.3783
1.7908 15610 - 0.3785
1.7919 15620 - 0.3783
1.7930 15630 - 0.3783
1.7942 15640 - 0.3784
1.7953 15650 - 0.3783
1.7965 15660 - 0.3782
1.7976 15670 - 0.3780
1.7988 15680 - 0.3779
1.7999 15690 - 0.3779
1.8011 15700 0.649 0.3779
1.8022 15710 - 0.3781
1.8034 15720 - 0.3781
1.8045 15730 - 0.3782
1.8057 15740 - 0.3780
1.8068 15750 - 0.3780
1.8080 15760 - 0.3780
1.8091 15770 - 0.3780
1.8103 15780 - 0.3780
1.8114 15790 - 0.3781
1.8126 15800 0.6673 0.3783
1.8137 15810 - 0.3781
1.8148 15820 - 0.3781
1.8160 15830 - 0.3785
1.8171 15840 - 0.3788
1.8183 15850 - 0.3789
1.8194 15860 - 0.3788
1.8206 15870 - 0.3786
1.8217 15880 - 0.3783
1.8229 15890 - 0.3782
1.8240 15900 0.6902 0.3783
1.8252 15910 - 0.3781
1.8263 15920 - 0.3779
1.8275 15930 - 0.3777
1.8286 15940 - 0.3778
1.8298 15950 - 0.3780
1.8309 15960 - 0.3780
1.8321 15970 - 0.3781
1.8332 15980 - 0.3780
1.8343 15990 - 0.3779
1.8355 16000 0.6568 0.3778

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 3.4.1
  • Transformers: 4.49.0
  • PyTorch: 2.2.0+cu121
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
57
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sobamchan/st5-base-mean-16000

Base model

google-t5/t5-base
Finetuned
(519)
this model

Dataset used to train sobamchan/st5-base-mean-16000