PubMedBERT-LitCovid-v1.3.1
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7014
- Hamming loss: 0.0168
- F1 micro: 0.8565
- F1 macro: 0.3886
- F1 weighted: 0.8851
- F1 samples: 0.8840
- Precision micro: 0.7895
- Precision macro: 0.3132
- Precision weighted: 0.8462
- Precision samples: 0.8704
- Recall micro: 0.9359
- Recall macro: 0.7261
- Recall weighted: 0.9359
- Recall samples: 0.9449
- Roc Auc: 0.9609
- Accuracy: 0.7036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Hamming loss | F1 micro | F1 macro | F1 weighted | F1 samples | Precision micro | Precision macro | Precision weighted | Precision samples | Recall micro | Recall macro | Recall weighted | Recall samples | Roc Auc | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1393 | 1.0 | 2272 | 0.4732 | 0.0330 | 0.7499 | 0.2762 | 0.8361 | 0.8351 | 0.6321 | 0.2203 | 0.7818 | 0.8088 | 0.9217 | 0.7515 | 0.9217 | 0.9379 | 0.9456 | 0.5912 |
0.9007 | 2.0 | 4544 | 0.5250 | 0.0207 | 0.8267 | 0.3500 | 0.8670 | 0.8660 | 0.7488 | 0.2801 | 0.8287 | 0.8507 | 0.9226 | 0.7377 | 0.9226 | 0.9358 | 0.9525 | 0.6570 |
0.7636 | 3.0 | 6816 | 0.5985 | 0.0180 | 0.8488 | 0.3754 | 0.8781 | 0.8803 | 0.7720 | 0.2994 | 0.8302 | 0.8595 | 0.9426 | 0.7214 | 0.9426 | 0.9516 | 0.9634 | 0.6836 |
0.5932 | 4.0 | 9088 | 0.6243 | 0.0168 | 0.8571 | 0.3900 | 0.8844 | 0.8837 | 0.7892 | 0.3146 | 0.8434 | 0.8689 | 0.9377 | 0.7315 | 0.9377 | 0.9467 | 0.9617 | 0.6996 |
0.3396 | 5.0 | 11360 | 0.7014 | 0.0168 | 0.8565 | 0.3886 | 0.8851 | 0.8840 | 0.7895 | 0.3132 | 0.8462 | 0.8704 | 0.9359 | 0.7261 | 0.9359 | 0.9449 | 0.9609 | 0.7036 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3
- Downloads last month
- 90
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.