Detección de acoso en Twitter Español

This model is a fine-tuned version of mrm8488/distilroberta-finetuned-tweets-hate-speech on hackathon-pln-es/Dataset-Acoso-Twitter-Es.

It achieves the following results on the evaluation set:

  • Loss: 0.1628
  • Accuracy: 0.9167

UNL: Universidad Nacional de Loja

Miembros del equipo:

  • Anderson Quizhpe
  • Luis Negrón
  • David Pacheco
  • Bryan Requenes
  • Paul Pasaca

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6732 1.0 27 0.3797 0.875
0.5537 2.0 54 0.3242 0.9167
0.5218 3.0 81 0.2879 0.9167
0.509 4.0 108 0.2606 0.9167
0.4196 5.0 135 0.1628 0.9167

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
27
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for somosnlp-hackathon-2022/Detect-Acoso-Twitter-Es

Finetuned
(1)
this model

Dataset used to train somosnlp-hackathon-2022/Detect-Acoso-Twitter-Es

Spaces using somosnlp-hackathon-2022/Detect-Acoso-Twitter-Es 2

Collection including somosnlp-hackathon-2022/Detect-Acoso-Twitter-Es