File size: 3,953 Bytes
0018ee1 e56ff2d e8e52a9 0018ee1 e8e52a9 0018ee1 3f5b139 fc91c97 e56ff2d b8840b1 e56ff2d 0018ee1 e56ff2d fc91c97 e56ff2d 0018ee1 e56ff2d 0018ee1 7ef2e7d e56ff2d 0018ee1 8a978fa 0018ee1 543888f 9a42a20 8a978fa 3f5b139 8a978fa 0018ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
language: es
license: mit
tags:
- generated_from_trainer
base_model: flax-community/spanish-t5-small
model-index:
- name: poem-gen-spanish-t5-small
results: []
---
# poem-gen-spanish-t5-small
This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the [Spanish Poetry Dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) dataset.
The model was created during the [First Spanish Hackathon](https://somosnlp.org/hackathon) organized by [Somos NLP](https://somosnlp.org/).
The team who participated was composed by:
- 🇨🇺 [Alberto Carmona Barthelemy](https://huggingface.co/milyiyo)
- 🇨🇴 [Jorge Henao](https://huggingface.co/jorge-henao)
- 🇪🇸 [Andrea Morales Garzón](https://huggingface.co/andreamorgar)
- 🇮🇳 [Drishti Sharma](https://huggingface.co/DrishtiSharma)
It achieves the following results on the evaluation set:
- Loss: 2.8707
- Perplexity: 17.65
## Model description
The model was trained to generate spanish poems attending to some parameters like style, sentiment, words to include and starting phrase.
Example:
```
poema:
estilo: Pablo Neruda &&
sentimiento: positivo &&
palabras: cielo, luna, mar &&
texto: Todos fueron a verle pasar
```
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = 'hackathon-pln-es/poem-gen-spanish-t5-small'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
author, sentiment, word, start_text = 'Pablo Neruda', 'positivo', 'cielo', 'Todos fueron a la plaza'
input_text = f"""poema: estilo: {author} && sentimiento: {sentiment} && palabras: {word} && texto: {start_text} """
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs["input_ids"],
do_sample = True,
max_length = 30,
repetition_penalty = 20.0,
top_k = 50,
top_p = 0.92)
detok_outputs = [tokenizer.decode(x, skip_special_tokens=True) for x in outputs]
res = detok_outputs[0]
```
## Training and evaluation data
The original [dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) has the columns `author`, `content` and `title`.
For each poem we generate new examples:
- content: *line_i* , generated: *line_i+1*
- content: *concatenate(line_i, line_i+1)* , generated: *line_i+2*
- content: *concatenate(line_i, line_i+1, line_i+2)* , generated: *line_i+3*
The resulting dataset has the columns `author`, `content`, `title` and `generated`.
For each example we compute the sentiment of the generated column and the nouns. In the case of sentiment, we used the model `mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis` and for nouns extraction we used spaCy.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.7082 | 0.73 | 30000 | 2.8878 |
| 2.6251 | 1.46 | 60000 | 2.8940 |
| 2.5796 | 2.19 | 90000 | 2.8853 |
| 2.5556 | 2.93 | 120000 | 2.8749 |
| 2.527 | 3.66 | 150000 | 2.8850 |
| 2.5024 | 4.39 | 180000 | 2.8760 |
| 2.4887 | 5.12 | 210000 | 2.8749 |
| 2.4808 | 5.85 | 240000 | 2.8707 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|