|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- samsum |
|
language: |
|
- en |
|
metrics: |
|
- rouge |
|
library_name: adapter-transformers |
|
model-index: |
|
- name: bart-large-cnn |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
split: validation |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 43.115 |
|
pipeline_tag: summarization |
|
inference: True |
|
--- |
|
|
|
# bart-large-cnn-finetuned-samsum-lora |
|
|
|
This model is a further fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the [samsum](https://huggingface.co/datasets/samsum) dataset. |
|
|
|
The base model [bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) is a fine-tuned verstion of BART model on the [CNN Daily Mail](https://huggingface.co/datasets/cnn_dailymail) dataset. |
|
|
|
Check out [sooolee/flan-t5-base-cnn-samsum-lora](https://huggingface.co/sooolee/flan-t5-base-cnn-samsum-lora) the model fine-tuned for the same purpose. |
|
|
|
## Model description |
|
|
|
* This model further finetuned 'bart-large-cnn' on the more conversational samsum dataset. |
|
* Huggingface [PEFT Library](https://github.com/huggingface/peft) LoRA (r = 8) was used to speed up training and reduce the model size. |
|
* Less than 1.2M parameters were trained (0.23% of original bart-large 510M parameters). |
|
* The model checkpoint is less than 5MB. |
|
|
|
## Intended uses & limitations |
|
|
|
Summarizes transcripts such as YouTube transcripts. |
|
|
|
## Training and evaluation data |
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
- train_loss: 1.28 |
|
- rogue1: 43.115465% |
|
- rouge2: 21.563061% |
|
- rougeL: 33.409979% |
|
- rougeLsum: 33.414162% |
|
|
|
### How to use |
|
Note 'max_new_tokens=60' is used in the example below to control the summary size. BART model has max generation length = 142 (default) and min generation length = 56. |
|
|
|
```python |
|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
|
|
# Load peft config for pre-trained checkpoint etc. |
|
peft_model_id = "sooolee/bart-large-cnn-finetuned-samsum-lora" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
|
|
# load base LLM model and tokenizer |
|
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
# Load the Lora model |
|
model = PeftModel.from_pretrained(model, peft_model_id, device_map='auto') |
|
|
|
# Tokenize the text inputs |
|
texts = "<e.g. Transcript>" |
|
inputs = tokenizer(texts, return_tensors="pt", padding=True, ) # truncation=True |
|
|
|
# Make inferences |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
with torch.no_grad(): |
|
output = self.model.generate(input_ids=inputs["input_ids"].to(device), max_new_tokens=60, do_sample=True, top_p=0.9) |
|
summary = self.tokenizer.batch_decode(output.detach().cpu().numpy(), skip_special_tokens=True) |
|
|
|
summary |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.2 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.3 |