Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix-bug-in-show-details-0517
#9
by
nan
- opened
- src/utils.py +3 -3
- tests/test_utils.py +22 -2
src/utils.py
CHANGED
|
@@ -113,10 +113,10 @@ def select_columns(
|
|
| 113 |
selected_cols.append(c)
|
| 114 |
# We use COLS to maintain sorting
|
| 115 |
filtered_df = df[FIXED_COLS + selected_cols]
|
| 116 |
-
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 117 |
-
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 118 |
-
filtered_df.reset_index(inplace=True, drop=True)
|
| 119 |
if reset_ranking:
|
|
|
|
|
|
|
|
|
|
| 120 |
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 121 |
|
| 122 |
return filtered_df
|
|
|
|
| 113 |
selected_cols.append(c)
|
| 114 |
# We use COLS to maintain sorting
|
| 115 |
filtered_df = df[FIXED_COLS + selected_cols]
|
|
|
|
|
|
|
|
|
|
| 116 |
if reset_ranking:
|
| 117 |
+
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].apply(calculate_mean, axis=1).round(decimals=2)
|
| 118 |
+
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
| 119 |
+
filtered_df.reset_index(inplace=True, drop=True)
|
| 120 |
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
| 121 |
|
| 122 |
return filtered_df
|
tests/test_utils.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
-
from src.utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc, get_iso_format_timestamp, get_default_cols
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
@pytest.fixture
|
|
@@ -92,4 +93,23 @@ def test_get_default_cols():
|
|
| 92 |
cols, types = get_default_cols("qa")
|
| 93 |
for c, t in zip(cols, types):
|
| 94 |
print(f"type({c}): {t}")
|
| 95 |
-
assert len(frozenset(cols)) == len(cols)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import pytest
|
| 3 |
|
| 4 |
+
from src.utils import filter_models, search_table, filter_queries, select_columns, update_table_long_doc, get_iso_format_timestamp, get_default_cols, update_table
|
| 5 |
+
from src.display.utils import COL_NAME_IS_ANONYMOUS, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL, COL_NAME_RANK, COL_NAME_AVG
|
| 6 |
|
| 7 |
|
| 8 |
@pytest.fixture
|
|
|
|
| 93 |
cols, types = get_default_cols("qa")
|
| 94 |
for c, t in zip(cols, types):
|
| 95 |
print(f"type({c}): {t}")
|
| 96 |
+
assert len(frozenset(cols)) == len(cols)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def test_update_table():
|
| 100 |
+
df = pd.DataFrame(
|
| 101 |
+
{
|
| 102 |
+
COL_NAME_IS_ANONYMOUS: [False, False, False],
|
| 103 |
+
COL_NAME_REVISION: ["a1", "a2", "a3"],
|
| 104 |
+
COL_NAME_TIMESTAMP: ["2024-05-12T12:24:02Z"] * 3,
|
| 105 |
+
COL_NAME_RERANKING_MODEL: ["NoReranker"] * 3,
|
| 106 |
+
COL_NAME_RETRIEVAL_MODEL: ["Foo"] * 3,
|
| 107 |
+
COL_NAME_RANK: [1, 2, 3],
|
| 108 |
+
COL_NAME_AVG: [0.1, 0.2, 0.3], # unsorted values
|
| 109 |
+
"wiki_en": [0.1, 0.2, 0.3]
|
| 110 |
+
}
|
| 111 |
+
)
|
| 112 |
+
results = update_table(df, "wiki", "en", ["NoReranker"], "", show_anonymous=False, reset_ranking=False, show_revision_and_timestamp=False)
|
| 113 |
+
# keep the RANK as the same regardless of the unsorted averages
|
| 114 |
+
assert results[COL_NAME_RANK].to_list() == [1, 2, 3]
|
| 115 |
+
|