ASesYusuf1's picture
Upload 102 files
c1683bf verified
raw
history blame
12.6 kB
# Kaggle için gerekli kütüphaneleri yükleme
!pip install librosa soundfile psutil tqdm
import os
import sys
import argparse
import numpy as np
import soundfile as sf
import librosa
import psutil
import gc
import traceback
from scipy.signal import stft, istft
from pathlib import Path
import tempfile
import shutil
import json
from tqdm import tqdm
import time
class AudioEnsembleEngine:
def __init__(self):
self.temp_dir = None
self.log_file = "/kaggle/working/ensemble_processor.log"
def __enter__(self):
self.temp_dir = tempfile.mkdtemp(prefix='audio_ensemble_', dir='/kaggle/working/')
self.setup_logging()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.temp_dir and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
def setup_logging(self):
"""Initialize detailed logging system."""
with open(self.log_file, 'w') as f:
f.write("Audio Ensemble Processor Log\n")
f.write("="*50 + "\n")
f.write(f"System Memory: {psutil.virtual_memory().total/(1024**3):.2f} GB\n")
f.write(f"Python Version: {sys.version}\n\n")
def log_message(self, message):
"""Log messages with timestamp."""
with open(self.log_file, 'a') as f:
f.write(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}\n")
def normalize_path(self, path):
"""Handle all path-related issues comprehensively."""
try:
# Kaggle'da dosya yolları /kaggle/input/ veya /kaggle/working/ altında
path = str(Path(path).absolute().resolve())
# Handle problematic characters
if any(char in path for char in '[]()|&; '):
base, ext = os.path.splitext(path)
safe_name = f"{hash(base)}{ext}"
temp_path = os.path.join(self.temp_dir, safe_name)
if not os.path.exists(temp_path):
data, sr = librosa.load(path, sr=None, mono=False)
sf.write(temp_path, data.T, sr)
return temp_path
return path
except Exception as e:
self.log_message(f"Path normalization failed: {str(e)}")
return path
def validate_inputs(self, files, method, output_path):
"""Comprehensive input validation with detailed error reporting."""
errors = []
valid_methods = [
'avg_wave', 'median_wave', 'max_wave', 'min_wave',
'max_fft', 'min_fft', 'median_fft'
]
# Method validation
if method not in valid_methods:
errors.append(f"Invalid method '{method}'. Available: {valid_methods}")
# File validation
valid_files = []
sample_rates = set()
durations = []
channels_set = set()
for f in files:
try:
f_normalized = self.normalize_path(f)
# Basic checks
if not os.path.exists(f_normalized):
errors.append(f"File not found: {f_normalized}")
continue
if os.path.getsize(f_normalized) == 0:
errors.append(f"Empty file: {f_normalized}")
continue
# Audio file validation
try:
with sf.SoundFile(f_normalized) as sf_file:
sr = sf_file.samplerate
frames = sf_file.frames
channels = sf_file.channels
except Exception as e:
errors.append(f"Invalid audio file {f_normalized}: {str(e)}")
continue
# Audio characteristics
if channels != 2:
errors.append(f"File must be stereo (has {channels} channels): {f_normalized}")
continue
sample_rates.add(sr)
durations.append(frames / sr)
channels_set.add(channels)
valid_files.append(f_normalized)
except Exception as e:
errors.append(f"Error processing {f}: {str(e)}")
continue
# Final checks
if len(valid_files) < 2:
errors.append("At least 2 valid files required")
if len(sample_rates) > 1:
errors.append(f"Sample rate mismatch: {sample_rates}")
if len(channels_set) > 1:
errors.append(f"Channel count mismatch: {channels_set}")
# Output path validation
try:
output_path = self.normalize_path(output_path)
output_dir = os.path.dirname(output_path) or '/kaggle/working/'
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
if not os.access(output_dir, os.W_OK):
errors.append(f"No write permission for output directory: {output_dir}")
except Exception as e:
errors.append(f"Output path error: {str(e)}")
if errors:
error_msg = "\n".join(errors)
self.log_message(f"Validation failed:\n{error_msg}")
raise ValueError(error_msg)
target_sr = sample_rates.pop() if sample_rates else 44100
return valid_files, target_sr, min(durations) if durations else None
def process_waveform(self, chunks, method, weights=None):
"""All waveform domain processing methods."""
if method == 'avg_wave':
if weights is not None:
return np.average(chunks, axis=0, weights=weights)
return np.mean(chunks, axis=0)
elif method == 'median_wave':
return np.median(chunks, axis=0)
elif method == 'max_wave':
return np.max(chunks, axis=0)
elif method == 'min_wave':
return np.min(chunks, axis=0)
def process_spectral(self, chunks, method):
"""All frequency domain processing methods."""
specs = []
for c in chunks:
channel_specs = []
for channel in range(c.shape[0]):
_, _, Zxx = stft(c[channel], nperseg=1024, noverlap=512)
channel_specs.append(Zxx)
specs.append(np.array(channel_specs))
specs = np.array(specs)
mag = np.abs(specs)
if method == 'max_fft':
combined_mag = np.max(mag, axis=0)
elif method == 'min_fft':
combined_mag = np.min(mag, axis=0)
elif method == 'median_fft':
combined_mag = np.median(mag, axis=0)
# Use phase from first file
combined_spec = combined_mag * np.exp(1j * np.angle(specs[0]))
# ISTFT reconstruction
reconstructed = np.zeros((combined_spec.shape[0], chunks[0].shape[1]))
for channel in range(combined_spec.shape[0]):
_, xrec = istft(combined_spec[channel], nperseg=1024, noverlap=512)
reconstructed[channel] = xrec[:chunks[0].shape[1]]
return reconstructed
def run_ensemble(self, files, method, output_path, weights=None, buffer_size=32768):
"""Core ensemble processing with maximum robustness."""
try:
# Validate and prepare inputs
valid_files, target_sr, duration = self.validate_inputs(files, method, output_path)
output_path = self.normalize_path(output_path)
self.log_message(f"Starting ensemble with method: {method}")
self.log_message(f"Input files: {json.dumps(valid_files, indent=2)}")
self.log_message(f"Target sample rate: {target_sr}Hz")
self.log_message(f"Output path: {output_path}")
# Prepare weights
if weights and len(weights) == len(valid_files):
weights = np.array(weights, dtype=np.float32)
weights /= weights.sum() # Normalize
self.log_message(f"Using weights: {weights}")
else:
weights = None
# Open all files
readers = []
try:
readers = [sf.SoundFile(f) for f in valid_files]
shortest_frames = min(int(duration * r.samplerate) for r in readers)
# Prepare output
with sf.SoundFile(output_path, 'w', target_sr, 2, 'PCM_24') as outfile:
# Process in chunks with progress bar
progress = tqdm(total=shortest_frames, unit='samples', desc='Processing')
for pos in range(0, shortest_frames, buffer_size):
chunk_size = min(buffer_size, shortest_frames - pos)
# Read aligned chunks from all files
chunks = []
for r in readers:
r.seek(pos)
data = r.read(chunk_size)
if data.size == 0:
data = np.zeros((chunk_size, 2))
chunks.append(data.T) # Transpose to (channels, samples)
chunks = np.array(chunks)
# Process based on method type
if method.endswith('_fft'):
result = self.process_spectral(chunks, method)
else:
result = self.process_waveform(chunks, method, weights)
# Write output
outfile.write(result.T) # Transpose back to (samples, channels)
# Clean up and update progress
del chunks, result
if pos % (5 * buffer_size) == 0:
gc.collect()
progress.update(chunk_size)
progress.close()
self.log_message(f"Successfully created output: {output_path}")
print(f"\nEnsemble completed successfully: {output_path}")
return True
except Exception as e:
self.log_message(f"Processing error: {str(e)}\n{traceback.format_exc()}")
raise
finally:
for r in readers:
try:
r.close()
except:
pass
except Exception as e:
self.log_message(f"Fatal error: {str(e)}\n{traceback.format_exc()}")
print(f"\nError during processing: {str(e)}", file=sys.stderr)
return False
def main():
parser = argparse.ArgumentParser(
description='Ultimate Audio Ensemble Processor - Supports all ensemble methods',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--files', nargs='+', required=True,
help='Input audio files (supports special characters)')
parser.add_argument('--type', required=True,
choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave',
'max_fft', 'min_fft', 'median_fft'],
help='Ensemble method to use')
parser.add_argument('--weights', nargs='+', type=float,
help='Relative weights for each input file')
parser.add_argument('--output', required=True,
help='Output file path')
parser.add_argument('--buffer', type=int, default=32768,
help='Buffer size in samples (larger=faster but uses more memory)')
args = parser.parse_args()
with AudioEnsembleEngine() as engine:
success = engine.run_ensemble(
files=args.files,
method=args.type,
output_path=args.output,
weights=args.weights,
buffer_size=args.buffer
)
sys.exit(0 if success else 1)
if __name__ == "__main__":
main()