Files changed (1) hide show
  1. README.md +35 -2
README.md CHANGED
@@ -10,5 +10,38 @@ pinned: true
10
  tags: [agent-demo-track, python]
11
  short_description: Explainable & transparent AI credit card fraud detection
12
  ---
13
- # AI-Powered Credit Card Fraud Detection
14
- A gradio web app that provide explainable fruad assessments for credit card transactions. This is achieved by a combination of a tabular fraud classifier and a reasoning LLM.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  tags: [agent-demo-track, python]
11
  short_description: Explainable & transparent AI credit card fraud detection
12
  ---
13
+ # AI-Powered Fraud Detection Agent
14
+
15
+ `agent-demo-track`
16
+ **Track:** 3. Agentic Demo Showcase
17
+ **Built For:** [Hugging Face Hackathon - Multimodal Challenge Playground (MCP)](https://huggingface.co/multimodal-challenge)
18
+ **Team:** Osama Elmahdy, Muhammed Hisham
19
+
20
+ ---
21
+
22
+ ## Overview
23
+
24
+ This Gradio-based AI Agent helps **merchants, analysts, and fraud teams** assess transaction legitimacy by combining a **fraud detection model** with **reasoning capabilities** powered by Hugging Face’s [`Nemotron-Research-Reasoning-Qwen-1.5B-GGUF`](https://huggingface.co/Nemotron-Research/Reasoning-Qwen-1_5B-GGUF) model.
25
+
26
+ Users input transaction details, and the system:
27
+ 1. **Classifies the transaction** as fraudulent or not.
28
+ 2. Uses LLM reasoning to **explain the decision** and provide **recommendations** for next steps (e.g., flag, approve, monitor).
29
+
30
+ ---
31
+
32
+ ## AI Stack
33
+
34
+ ### Core Idea
35
+
36
+ > First, check if a transaction is likely fraudulent using a traditional ML model trained on real-world features. Then, invoke an open LLM agent (via GGUF + llama-cpp) to explain and suggest human-friendly actions.
37
+
38
+ ### Components Used
39
+
40
+ - **Fraud Detection:**
41
+ - Custom-trained classifier (scikit-learn + LIME explanations)
42
+ - **Reasoning & Recommendations:**
43
+ - Hugging Face’s `Nemotron-Research-Reasoning-Qwen-1.5B-GGUF` running locally via `llama-cpp-python`
44
+ - **UI:**
45
+ - Gradio
46
+
47
+ ---