|
|
|
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer |
|
from datasets import load_from_disk |
|
|
|
tokenized_dataset = load_from_disk("tokenized_dataset") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") |
|
|
|
training_args = TrainingArguments( |
|
output_dir="./checkpoints", |
|
num_train_epochs=1, |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=8, |
|
evaluation_strategy="no", |
|
save_strategy="epoch", |
|
fp16=True, |
|
logging_steps=50, |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_dataset, |
|
) |
|
|
|
trainer.train() |
|
model.save_pretrained("./my_ai_assistant", safe_serialization=True) |
|
|