Spaces:
Runtime error
Runtime error
File size: 5,480 Bytes
23e0fa2 186dc8d 23e0fa2 871b8f2 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d 23e0fa2 186dc8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import whisper
from pyannote.audio import Pipeline
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from bertopic import BERTopic
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import torch
# Load Whisper model for transcription
whisper_model = whisper.load_model("large-v2") # Use "large-v2" if "large" doesn't work
# Load translation pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ar-en")
# Load summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Load LLaMA model and tokenizer for chat-based interaction
llama_model_name = "meta-llama/Llama-2-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(llama_model_name)
model = AutoModelForCausalLM.from_pretrained(llama_model_name)
# Global variables to store processed data
aligned_transcription = []
translated_text = ""
topics = []
summary = ""
def perform_speaker_diarization(audio_path, hf_token="YOUR_HUGGINGFACE_TOKEN"):
# Load the speaker diarization pipeline
pipeline = Pipeline.from_pretrained("pyannote/[email protected]", use_auth_token=hf_token)
# Apply diarization
diarization = pipeline(audio_path)
# Extract speaker segments
speaker_segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
speaker_segments.append({
"start": turn.start,
"end": turn.end,
"speaker": speaker
})
return speaker_segments
def transcribe_with_speaker_diarization(audio_path, hf_token="YOUR_HUGGINGFACE_TOKEN"):
# Step 1: Perform speaker diarization
speaker_segments = perform_speaker_diarization(audio_path, hf_token)
# Step 2: Transcribe audio
transcription = whisper_model.transcribe(audio_path)
# Step 3: Align transcription with speaker segments
aligned_transcription = []
for segment in transcription["segments"]:
start_time = segment["start"]
end_time = segment["end"]
text = segment["text"]
# Find the corresponding speaker
speaker = "Unknown"
for spk_segment in speaker_segments:
if spk_segment["start"] <= start_time <= spk_segment["end"]:
speaker = spk_segment["speaker"]
break
aligned_transcription.append({
"speaker": speaker,
"start": start_time,
"end": end_time,
"text": text
})
return aligned_transcription
def translate_text(text, src_lang="ar", tgt_lang="en"):
translated = translator(text, max_length=400)
return translated[0]["translation_text"]
def perform_topic_modeling(texts):
vectorizer = CountVectorizer(stop_words="english")
topic_model = BERTopic(vectorizer_model=vectorizer, calculate_probabilities=True)
topics, probs = topic_model.fit_transform(texts)
return topic_model.get_topic_info(), topic_model.visualize_topics()
def summarize_text(text, max_length=150, min_length=30):
summary = summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)
return summary[0]["summary_text"]
def generate_response(prompt, max_tokens=150):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=max_tokens)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def process_audio(audio_path, language="auto", hf_token="YOUR_HUGGINGFACE_TOKEN"):
global aligned_transcription, translated_text, topics, summary
# Step 1: Transcribe audio with speaker diarization
aligned_transcription = transcribe_with_speaker_diarization(audio_path, hf_token)
# Step 2: Translate text if needed
full_text = " ".join([seg["text"] for seg in aligned_transcription])
if language != "en":
translated_text = translate_text(full_text, src_lang="ar", tgt_lang="en")
else:
translated_text = full_text
# Step 3: Perform topic modeling
topics, _ = perform_topic_modeling([translated_text])
# Step 4: Summarize text
summary = summarize_text(translated_text)
return "Audio processed successfully!"
def answer_question(query):
global aligned_transcription, translated_text, topics, summary
# Combine context for the LLM
context = f"""
Transcription: {translated_text}
Topics: {topics.to_string(index=False)}
Summary: {summary}
"""
# Generate response using LLM
response = generate_response(f"{context}\nQuestion: {query}")
return response
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Advanced Audio Analysis App with Speaker Diarization")
audio_input = gr.Audio(label="Upload Audio File")
language_input = gr.Dropdown(choices=["auto", "en", "ar"], label="Language", value="auto")
hf_token_input = gr.Textbox(label="Hugging Face Token (for pyannote.audio)", type="password")
process_button = gr.Button("Process Audio")
status_output = gr.Textbox(label="Status")
question_input = gr.Textbox(label="Ask a Question")
answer_output = gr.Textbox(label="Answer")
process_button.click(
process_audio,
inputs=[audio_input, language_input, hf_token_input],
outputs=status_output
)
question_input.submit(answer_question, inputs=question_input, outputs=answer_output)
demo.launch() |