Update mediSync/models/multimodal_fusion.py
Browse files- mediSync/models/multimodal_fusion.py +631 -631
mediSync/models/multimodal_fusion.py
CHANGED
@@ -1,631 +1,631 @@
|
|
1 |
-
import logging
|
2 |
-
|
3 |
-
from .image_analyzer import XRayImageAnalyzer
|
4 |
-
from .text_analyzer import MedicalReportAnalyzer
|
5 |
-
|
6 |
-
|
7 |
-
class MultimodalFusion:
|
8 |
-
"""
|
9 |
-
A class for fusing insights from image analysis and text analysis of medical data.
|
10 |
-
|
11 |
-
This fusion approach combines the strengths of both modalities:
|
12 |
-
- Images provide visual evidence of abnormalities
|
13 |
-
- Text reports provide context, history and radiologist interpretations
|
14 |
-
|
15 |
-
The combined analysis provides a more comprehensive understanding than either modality alone.
|
16 |
-
"""
|
17 |
-
|
18 |
-
def __init__(self, image_model=None, text_model=None, device=None):
|
19 |
-
"""
|
20 |
-
Initialize the multimodal fusion module with image and text analyzers.
|
21 |
-
|
22 |
-
Args:
|
23 |
-
image_model (str, optional): Model to use for image analysis
|
24 |
-
text_model (str, optional): Model to use for text analysis
|
25 |
-
device (str, optional): Device to run models on ('cuda' or 'cpu')
|
26 |
-
"""
|
27 |
-
self.logger = logging.getLogger(__name__)
|
28 |
-
|
29 |
-
# Determine device
|
30 |
-
if device is None:
|
31 |
-
import torch
|
32 |
-
|
33 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
-
else:
|
35 |
-
self.device = device
|
36 |
-
|
37 |
-
self.logger.info(f"Using device: {self.device}")
|
38 |
-
|
39 |
-
# Initialize image analyzer
|
40 |
-
try:
|
41 |
-
self.image_analyzer = XRayImageAnalyzer(
|
42 |
-
model_name=image_model
|
43 |
-
if image_model
|
44 |
-
else "
|
45 |
-
device=self.device,
|
46 |
-
)
|
47 |
-
self.logger.info("Successfully initialized image analyzer")
|
48 |
-
except Exception as e:
|
49 |
-
self.logger.error(f"Failed to initialize image analyzer: {e}")
|
50 |
-
self.image_analyzer = None
|
51 |
-
|
52 |
-
# Initialize text analyzer
|
53 |
-
try:
|
54 |
-
self.text_analyzer = MedicalReportAnalyzer(
|
55 |
-
classifier_model=text_model if text_model else "medicalai/ClinicalBERT",
|
56 |
-
device=self.device,
|
57 |
-
)
|
58 |
-
self.logger.info("Successfully initialized text analyzer")
|
59 |
-
except Exception as e:
|
60 |
-
self.logger.error(f"Failed to initialize text analyzer: {e}")
|
61 |
-
self.text_analyzer = None
|
62 |
-
|
63 |
-
def analyze_image(self, image_path):
|
64 |
-
"""
|
65 |
-
Analyze a medical image.
|
66 |
-
|
67 |
-
Args:
|
68 |
-
image_path (str): Path to the medical image
|
69 |
-
|
70 |
-
Returns:
|
71 |
-
dict: Image analysis results
|
72 |
-
"""
|
73 |
-
if not self.image_analyzer:
|
74 |
-
self.logger.warning("Image analyzer not available")
|
75 |
-
return {"error": "Image analyzer not available"}
|
76 |
-
|
77 |
-
try:
|
78 |
-
return self.image_analyzer.analyze(image_path)
|
79 |
-
except Exception as e:
|
80 |
-
self.logger.error(f"Error analyzing image: {e}")
|
81 |
-
return {"error": str(e)}
|
82 |
-
|
83 |
-
def analyze_text(self, text):
|
84 |
-
"""
|
85 |
-
Analyze medical report text.
|
86 |
-
|
87 |
-
Args:
|
88 |
-
text (str): Medical report text
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
dict: Text analysis results
|
92 |
-
"""
|
93 |
-
if not self.text_analyzer:
|
94 |
-
self.logger.warning("Text analyzer not available")
|
95 |
-
return {"error": "Text analyzer not available"}
|
96 |
-
|
97 |
-
try:
|
98 |
-
return self.text_analyzer.analyze(text)
|
99 |
-
except Exception as e:
|
100 |
-
self.logger.error(f"Error analyzing text: {e}")
|
101 |
-
return {"error": str(e)}
|
102 |
-
|
103 |
-
def _calculate_agreement_score(self, image_results, text_results):
|
104 |
-
"""
|
105 |
-
Calculate agreement score between image and text analyses.
|
106 |
-
|
107 |
-
Args:
|
108 |
-
image_results (dict): Results from image analysis
|
109 |
-
text_results (dict): Results from text analysis
|
110 |
-
|
111 |
-
Returns:
|
112 |
-
float: Agreement score (0-1, where 1 is perfect agreement)
|
113 |
-
"""
|
114 |
-
try:
|
115 |
-
# Default to neutral agreement
|
116 |
-
agreement = 0.5
|
117 |
-
|
118 |
-
# Check if image detected abnormality
|
119 |
-
image_abnormal = image_results.get("has_abnormality", False)
|
120 |
-
|
121 |
-
# Check text severity
|
122 |
-
text_severity = text_results.get("severity", {}).get("level", "Unknown")
|
123 |
-
text_abnormal = text_severity not in ["Normal", "Unknown"]
|
124 |
-
|
125 |
-
# Basic agreement check
|
126 |
-
if image_abnormal == text_abnormal:
|
127 |
-
agreement += 0.25
|
128 |
-
else:
|
129 |
-
agreement -= 0.25
|
130 |
-
|
131 |
-
# Check if specific findings match
|
132 |
-
image_finding = image_results.get("primary_finding", "").lower()
|
133 |
-
|
134 |
-
# Extract problem entities from text
|
135 |
-
problems = text_results.get("entities", {}).get("problem", [])
|
136 |
-
problem_text = " ".join(problems).lower()
|
137 |
-
|
138 |
-
# Check for common keywords in both
|
139 |
-
common_conditions = [
|
140 |
-
"pneumonia",
|
141 |
-
"effusion",
|
142 |
-
"nodule",
|
143 |
-
"mass",
|
144 |
-
"cardiomegaly",
|
145 |
-
"opacity",
|
146 |
-
"fracture",
|
147 |
-
"tumor",
|
148 |
-
"edema",
|
149 |
-
]
|
150 |
-
|
151 |
-
matching_conditions = 0
|
152 |
-
total_mentioned = 0
|
153 |
-
|
154 |
-
for condition in common_conditions:
|
155 |
-
in_image = condition in image_finding
|
156 |
-
in_text = condition in problem_text
|
157 |
-
|
158 |
-
if in_image or in_text:
|
159 |
-
total_mentioned += 1
|
160 |
-
|
161 |
-
if in_image and in_text:
|
162 |
-
matching_conditions += 1
|
163 |
-
agreement += 0.05 # Boost agreement for each matching condition
|
164 |
-
|
165 |
-
# Calculate condition match ratio if any conditions were mentioned
|
166 |
-
if total_mentioned > 0:
|
167 |
-
match_ratio = matching_conditions / total_mentioned
|
168 |
-
agreement += match_ratio * 0.2
|
169 |
-
|
170 |
-
# Normalize agreement to 0-1 range
|
171 |
-
agreement = max(0, min(1, agreement))
|
172 |
-
|
173 |
-
return agreement
|
174 |
-
|
175 |
-
except Exception as e:
|
176 |
-
self.logger.error(f"Error calculating agreement score: {e}")
|
177 |
-
return 0.5 # Return neutral agreement on error
|
178 |
-
|
179 |
-
def _get_confidence_weighted_finding(self, image_results, text_results, agreement):
|
180 |
-
"""
|
181 |
-
Get the most confident finding weighted by modality confidence.
|
182 |
-
|
183 |
-
Args:
|
184 |
-
image_results (dict): Results from image analysis
|
185 |
-
text_results (dict): Results from text analysis
|
186 |
-
agreement (float): Agreement score between modalities
|
187 |
-
|
188 |
-
Returns:
|
189 |
-
str: Most confident finding
|
190 |
-
"""
|
191 |
-
try:
|
192 |
-
image_finding = image_results.get("primary_finding", "")
|
193 |
-
image_confidence = image_results.get("confidence", 0.5)
|
194 |
-
|
195 |
-
# For text, use the most severe problem as primary finding
|
196 |
-
problems = text_results.get("entities", {}).get("problem", [])
|
197 |
-
|
198 |
-
text_confidence = text_results.get("severity", {}).get("confidence", 0.5)
|
199 |
-
|
200 |
-
if not problems:
|
201 |
-
# No problems identified in text
|
202 |
-
if image_confidence > 0.7:
|
203 |
-
return image_finding
|
204 |
-
else:
|
205 |
-
return "No significant findings"
|
206 |
-
|
207 |
-
# Simple confidence-weighted selection
|
208 |
-
if image_confidence > text_confidence + 0.2:
|
209 |
-
return image_finding
|
210 |
-
elif problems and text_confidence > image_confidence + 0.2:
|
211 |
-
return (
|
212 |
-
problems[0]
|
213 |
-
if isinstance(problems, list) and problems
|
214 |
-
else "Unknown finding"
|
215 |
-
)
|
216 |
-
else:
|
217 |
-
# Similar confidence, check agreement
|
218 |
-
if agreement > 0.7:
|
219 |
-
# High agreement, try to find the specific condition mentioned in both
|
220 |
-
for problem in problems:
|
221 |
-
if problem.lower() in image_finding.lower():
|
222 |
-
return problem
|
223 |
-
|
224 |
-
# Default to image finding if high confidence
|
225 |
-
if image_confidence > 0.6:
|
226 |
-
return image_finding
|
227 |
-
elif problems:
|
228 |
-
return problems[0]
|
229 |
-
else:
|
230 |
-
return image_finding
|
231 |
-
else:
|
232 |
-
# Low agreement, include both perspectives
|
233 |
-
if image_finding and problems:
|
234 |
-
return f"{image_finding} (image) / {problems[0]} (report)"
|
235 |
-
elif image_finding:
|
236 |
-
return image_finding
|
237 |
-
elif problems:
|
238 |
-
return problems[0]
|
239 |
-
else:
|
240 |
-
return "Findings unclear - review recommended"
|
241 |
-
|
242 |
-
except Exception as e:
|
243 |
-
self.logger.error(f"Error getting weighted finding: {e}")
|
244 |
-
return "Unable to determine primary finding"
|
245 |
-
|
246 |
-
def _merge_followup_recommendations(self, image_results, text_results):
|
247 |
-
"""
|
248 |
-
Merge follow-up recommendations from both modalities.
|
249 |
-
|
250 |
-
Args:
|
251 |
-
image_results (dict): Results from image analysis
|
252 |
-
text_results (dict): Results from text analysis
|
253 |
-
|
254 |
-
Returns:
|
255 |
-
list: Combined follow-up recommendations
|
256 |
-
"""
|
257 |
-
try:
|
258 |
-
# Get text-based recommendations
|
259 |
-
text_recommendations = text_results.get("followup_recommendations", [])
|
260 |
-
|
261 |
-
# Create image-based recommendations based on findings
|
262 |
-
image_recommendations = []
|
263 |
-
|
264 |
-
if image_results.get("has_abnormality", False):
|
265 |
-
primary = image_results.get("primary_finding", "")
|
266 |
-
confidence = image_results.get("confidence", 0)
|
267 |
-
|
268 |
-
if (
|
269 |
-
"nodule" in primary.lower()
|
270 |
-
or "mass" in primary.lower()
|
271 |
-
or "tumor" in primary.lower()
|
272 |
-
):
|
273 |
-
image_recommendations.append(
|
274 |
-
f"Follow-up imaging recommended to further evaluate {primary}."
|
275 |
-
)
|
276 |
-
elif "pneumonia" in primary.lower():
|
277 |
-
image_recommendations.append(
|
278 |
-
"Clinical correlation and follow-up imaging recommended."
|
279 |
-
)
|
280 |
-
elif confidence > 0.8:
|
281 |
-
image_recommendations.append(
|
282 |
-
f"Consider follow-up imaging to monitor {primary}."
|
283 |
-
)
|
284 |
-
elif confidence > 0.5:
|
285 |
-
image_recommendations.append(
|
286 |
-
"Consider clinical correlation and potential follow-up."
|
287 |
-
)
|
288 |
-
|
289 |
-
# Combine recommendations, removing duplicates
|
290 |
-
all_recommendations = text_recommendations + image_recommendations
|
291 |
-
|
292 |
-
# Remove near-duplicates (similar recommendations)
|
293 |
-
unique_recommendations = []
|
294 |
-
for rec in all_recommendations:
|
295 |
-
if not any(
|
296 |
-
self._is_similar_recommendation(rec, existing)
|
297 |
-
for existing in unique_recommendations
|
298 |
-
):
|
299 |
-
unique_recommendations.append(rec)
|
300 |
-
|
301 |
-
return unique_recommendations
|
302 |
-
|
303 |
-
except Exception as e:
|
304 |
-
self.logger.error(f"Error merging follow-up recommendations: {e}")
|
305 |
-
return ["Follow-up recommended based on findings."]
|
306 |
-
|
307 |
-
def _is_similar_recommendation(self, rec1, rec2):
|
308 |
-
"""Check if two recommendations are semantically similar."""
|
309 |
-
# Convert to lowercase for comparison
|
310 |
-
rec1_lower = rec1.lower()
|
311 |
-
rec2_lower = rec2.lower()
|
312 |
-
|
313 |
-
# Check for significant overlap
|
314 |
-
words1 = set(rec1_lower.split())
|
315 |
-
words2 = set(rec2_lower.split())
|
316 |
-
|
317 |
-
# Calculate Jaccard similarity
|
318 |
-
intersection = words1.intersection(words2)
|
319 |
-
union = words1.union(words2)
|
320 |
-
|
321 |
-
similarity = len(intersection) / len(union) if union else 0
|
322 |
-
|
323 |
-
# Consider similar if more than 60% overlap
|
324 |
-
return similarity > 0.6
|
325 |
-
|
326 |
-
def _get_final_severity(self, image_results, text_results, agreement):
|
327 |
-
"""
|
328 |
-
Determine final severity based on both modalities.
|
329 |
-
|
330 |
-
Args:
|
331 |
-
image_results (dict): Results from image analysis
|
332 |
-
text_results (dict): Results from text analysis
|
333 |
-
agreement (float): Agreement score between modalities
|
334 |
-
|
335 |
-
Returns:
|
336 |
-
dict: Final severity assessment
|
337 |
-
"""
|
338 |
-
try:
|
339 |
-
# Get text-based severity
|
340 |
-
text_severity = text_results.get("severity", {})
|
341 |
-
text_level = text_severity.get("level", "Unknown")
|
342 |
-
text_score = text_severity.get("score", 0)
|
343 |
-
text_confidence = text_severity.get("confidence", 0.5)
|
344 |
-
|
345 |
-
# Convert image findings to severity
|
346 |
-
image_abnormal = image_results.get("has_abnormality", False)
|
347 |
-
image_confidence = image_results.get("confidence", 0.5)
|
348 |
-
|
349 |
-
# Default severity mapping from image
|
350 |
-
image_severity = "Normal" if not image_abnormal else "Moderate"
|
351 |
-
image_score = 0 if not image_abnormal else 2.0
|
352 |
-
|
353 |
-
# Adjust image severity based on specific findings
|
354 |
-
primary_finding = image_results.get("primary_finding", "").lower()
|
355 |
-
|
356 |
-
# Map certain conditions to severity levels
|
357 |
-
severity_mapping = {
|
358 |
-
"pneumonia": ("Moderate", 2.5),
|
359 |
-
"pneumothorax": ("Severe", 3.0),
|
360 |
-
"effusion": ("Moderate", 2.0),
|
361 |
-
"pulmonary edema": ("Moderate", 2.5),
|
362 |
-
"nodule": ("Mild", 1.5),
|
363 |
-
"mass": ("Moderate", 2.5),
|
364 |
-
"tumor": ("Severe", 3.0),
|
365 |
-
"cardiomegaly": ("Mild", 1.5),
|
366 |
-
"fracture": ("Moderate", 2.0),
|
367 |
-
"consolidation": ("Moderate", 2.0),
|
368 |
-
}
|
369 |
-
|
370 |
-
# Check if any key terms are in the primary finding
|
371 |
-
for key, (severity, score) in severity_mapping.items():
|
372 |
-
if key in primary_finding:
|
373 |
-
image_severity = severity
|
374 |
-
image_score = score
|
375 |
-
break
|
376 |
-
|
377 |
-
# Weight based on confidence and agreement
|
378 |
-
if agreement > 0.7:
|
379 |
-
# High agreement - weight equally
|
380 |
-
final_score = (image_score + text_score) / 2
|
381 |
-
else:
|
382 |
-
# Lower agreement - weight by confidence
|
383 |
-
total_confidence = image_confidence + text_confidence
|
384 |
-
if total_confidence > 0:
|
385 |
-
image_weight = image_confidence / total_confidence
|
386 |
-
text_weight = text_confidence / total_confidence
|
387 |
-
final_score = (image_score * image_weight) + (
|
388 |
-
text_score * text_weight
|
389 |
-
)
|
390 |
-
else:
|
391 |
-
final_score = (image_score + text_score) / 2
|
392 |
-
|
393 |
-
# Map score to severity level
|
394 |
-
severity_levels = {
|
395 |
-
0: "Normal",
|
396 |
-
1: "Mild",
|
397 |
-
2: "Moderate",
|
398 |
-
3: "Severe",
|
399 |
-
4: "Critical",
|
400 |
-
}
|
401 |
-
|
402 |
-
# Round to nearest level
|
403 |
-
level_index = round(min(4, max(0, final_score)))
|
404 |
-
final_level = severity_levels[level_index]
|
405 |
-
|
406 |
-
return {
|
407 |
-
"level": final_level,
|
408 |
-
"score": round(final_score, 1),
|
409 |
-
"confidence": round((image_confidence + text_confidence) / 2, 2),
|
410 |
-
}
|
411 |
-
|
412 |
-
except Exception as e:
|
413 |
-
self.logger.error(f"Error determining final severity: {e}")
|
414 |
-
return {"level": "Unknown", "score": 0, "confidence": 0}
|
415 |
-
|
416 |
-
def fuse_analyses(self, image_results, text_results):
|
417 |
-
"""
|
418 |
-
Fuse the results from image and text analyses.
|
419 |
-
|
420 |
-
Args:
|
421 |
-
image_results (dict): Results from image analysis
|
422 |
-
text_results (dict): Results from text analysis
|
423 |
-
|
424 |
-
Returns:
|
425 |
-
dict: Fused analysis results
|
426 |
-
"""
|
427 |
-
try:
|
428 |
-
# Calculate agreement between modalities
|
429 |
-
agreement = self._calculate_agreement_score(image_results, text_results)
|
430 |
-
self.logger.info(f"Agreement score between modalities: {agreement:.2f}")
|
431 |
-
|
432 |
-
# Get confidence-weighted primary finding
|
433 |
-
primary_finding = self._get_confidence_weighted_finding(
|
434 |
-
image_results, text_results, agreement
|
435 |
-
)
|
436 |
-
|
437 |
-
# Merge follow-up recommendations
|
438 |
-
followup = self._merge_followup_recommendations(image_results, text_results)
|
439 |
-
|
440 |
-
# Get final severity assessment
|
441 |
-
severity = self._get_final_severity(image_results, text_results, agreement)
|
442 |
-
|
443 |
-
# Create comprehensive findings list
|
444 |
-
findings = []
|
445 |
-
|
446 |
-
# Add text-extracted findings
|
447 |
-
text_findings = text_results.get("findings", [])
|
448 |
-
if text_findings:
|
449 |
-
findings.extend(text_findings)
|
450 |
-
|
451 |
-
# Add primary image finding if not already included
|
452 |
-
image_finding = image_results.get("primary_finding", "")
|
453 |
-
if image_finding and not any(
|
454 |
-
image_finding.lower() in f.lower() for f in findings
|
455 |
-
):
|
456 |
-
findings.append(f"Image finding: {image_finding}")
|
457 |
-
|
458 |
-
# Create fused result
|
459 |
-
fused_result = {
|
460 |
-
"agreement_score": round(agreement, 2),
|
461 |
-
"primary_finding": primary_finding,
|
462 |
-
"severity": severity,
|
463 |
-
"findings": findings,
|
464 |
-
"followup_recommendations": followup,
|
465 |
-
"modality_results": {"image": image_results, "text": text_results},
|
466 |
-
}
|
467 |
-
|
468 |
-
return fused_result
|
469 |
-
|
470 |
-
except Exception as e:
|
471 |
-
self.logger.error(f"Error fusing analyses: {e}")
|
472 |
-
return {
|
473 |
-
"error": str(e),
|
474 |
-
"modality_results": {"image": image_results, "text": text_results},
|
475 |
-
}
|
476 |
-
|
477 |
-
def analyze(self, image_path, report_text):
|
478 |
-
"""
|
479 |
-
Perform multimodal analysis of medical image and report.
|
480 |
-
|
481 |
-
Args:
|
482 |
-
image_path (str): Path to the medical image
|
483 |
-
report_text (str): Medical report text
|
484 |
-
|
485 |
-
Returns:
|
486 |
-
dict: Fused analysis results
|
487 |
-
"""
|
488 |
-
try:
|
489 |
-
# Analyze image
|
490 |
-
image_results = self.analyze_image(image_path)
|
491 |
-
|
492 |
-
# Analyze text
|
493 |
-
text_results = self.analyze_text(report_text)
|
494 |
-
|
495 |
-
# Fuse the analyses
|
496 |
-
return self.fuse_analyses(image_results, text_results)
|
497 |
-
|
498 |
-
except Exception as e:
|
499 |
-
self.logger.error(f"Error in multimodal analysis: {e}")
|
500 |
-
return {"error": str(e)}
|
501 |
-
|
502 |
-
def get_explanation(self, fused_results):
|
503 |
-
"""
|
504 |
-
Generate a human-readable explanation of the fused analysis.
|
505 |
-
|
506 |
-
Args:
|
507 |
-
fused_results (dict): Results from the fused analysis
|
508 |
-
|
509 |
-
Returns:
|
510 |
-
str: A text explanation of the fused analysis
|
511 |
-
"""
|
512 |
-
try:
|
513 |
-
explanation = []
|
514 |
-
|
515 |
-
# Add overview section
|
516 |
-
primary_finding = fused_results.get("primary_finding", "Unknown")
|
517 |
-
severity = fused_results.get("severity", {}).get("level", "Unknown")
|
518 |
-
|
519 |
-
explanation.append("# Medical Analysis Summary\n")
|
520 |
-
explanation.append("## Overview\n")
|
521 |
-
explanation.append(f"Primary finding: **{primary_finding}**\n")
|
522 |
-
explanation.append(f"Severity level: **{severity}**\n")
|
523 |
-
|
524 |
-
# Add agreement information
|
525 |
-
agreement = fused_results.get("agreement_score", 0)
|
526 |
-
agreement_text = (
|
527 |
-
"High" if agreement > 0.7 else "Moderate" if agreement > 0.4 else "Low"
|
528 |
-
)
|
529 |
-
|
530 |
-
explanation.append(
|
531 |
-
f"Image and text analysis agreement: **{agreement_text}** ({agreement:.0%})\n"
|
532 |
-
)
|
533 |
-
|
534 |
-
# Add findings section
|
535 |
-
explanation.append("\n## Detailed Findings\n")
|
536 |
-
findings = fused_results.get("findings", [])
|
537 |
-
|
538 |
-
if findings:
|
539 |
-
for finding in findings:
|
540 |
-
explanation.append(f"- {finding}\n")
|
541 |
-
else:
|
542 |
-
explanation.append("No specific findings detailed.\n")
|
543 |
-
|
544 |
-
# Add follow-up section
|
545 |
-
explanation.append("\n## Recommended Follow-up\n")
|
546 |
-
followups = fused_results.get("followup_recommendations", [])
|
547 |
-
|
548 |
-
if followups:
|
549 |
-
for followup in followups:
|
550 |
-
explanation.append(f"- {followup}\n")
|
551 |
-
else:
|
552 |
-
explanation.append("No specific follow-up recommendations provided.\n")
|
553 |
-
|
554 |
-
# Add confidence note
|
555 |
-
confidence = fused_results.get("severity", {}).get("confidence", 0)
|
556 |
-
explanation.append(
|
557 |
-
f"\n*Note: This analysis has a confidence level of {confidence:.0%}. "
|
558 |
-
f"Please consult with healthcare professionals for official diagnosis.*"
|
559 |
-
)
|
560 |
-
|
561 |
-
return "\n".join(explanation)
|
562 |
-
|
563 |
-
except Exception as e:
|
564 |
-
self.logger.error(f"Error generating explanation: {e}")
|
565 |
-
return "Error generating analysis explanation."
|
566 |
-
|
567 |
-
|
568 |
-
# Example usage
|
569 |
-
if __name__ == "__main__":
|
570 |
-
# Set up logging
|
571 |
-
logging.basicConfig(level=logging.INFO)
|
572 |
-
|
573 |
-
# Test on sample data if available
|
574 |
-
import os
|
575 |
-
|
576 |
-
fusion = MultimodalFusion()
|
577 |
-
|
578 |
-
# Sample text report
|
579 |
-
sample_report = """
|
580 |
-
CHEST X-RAY EXAMINATION
|
581 |
-
|
582 |
-
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
583 |
-
|
584 |
-
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
585 |
-
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
586 |
-
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
587 |
-
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
588 |
-
|
589 |
-
IMPRESSION:
|
590 |
-
1. Mild cardiomegaly.
|
591 |
-
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
592 |
-
3. No acute pulmonary parenchymal abnormality.
|
593 |
-
|
594 |
-
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
595 |
-
"""
|
596 |
-
|
597 |
-
# Check if sample data directory exists and contains images
|
598 |
-
sample_dir = "../data/sample"
|
599 |
-
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
600 |
-
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
601 |
-
print(f"Analyzing sample image: {sample_image}")
|
602 |
-
|
603 |
-
# Perform multimodal analysis
|
604 |
-
fused_results = fusion.analyze(sample_image, sample_report)
|
605 |
-
explanation = fusion.get_explanation(fused_results)
|
606 |
-
|
607 |
-
print("\nFused Analysis Results:")
|
608 |
-
print(explanation)
|
609 |
-
else:
|
610 |
-
print("No sample images found. Only analyzing text report.")
|
611 |
-
|
612 |
-
# Analyze just the text
|
613 |
-
text_results = fusion.analyze_text(sample_report)
|
614 |
-
|
615 |
-
print("\nText Analysis Results:")
|
616 |
-
print(
|
617 |
-
f"Severity: {text_results['severity']['level']} (Score: {text_results['severity']['score']})"
|
618 |
-
)
|
619 |
-
|
620 |
-
print("\nKey Findings:")
|
621 |
-
for finding in text_results["findings"]:
|
622 |
-
print(f"- {finding}")
|
623 |
-
|
624 |
-
print("\nEntities:")
|
625 |
-
for category, items in text_results["entities"].items():
|
626 |
-
if items:
|
627 |
-
print(f"- {category.capitalize()}: {', '.join(items)}")
|
628 |
-
|
629 |
-
print("\nFollow-up Recommendations:")
|
630 |
-
for rec in text_results["followup_recommendations"]:
|
631 |
-
print(f"- {rec}")
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
from .image_analyzer import XRayImageAnalyzer
|
4 |
+
from .text_analyzer import MedicalReportAnalyzer
|
5 |
+
|
6 |
+
|
7 |
+
class MultimodalFusion:
|
8 |
+
"""
|
9 |
+
A class for fusing insights from image analysis and text analysis of medical data.
|
10 |
+
|
11 |
+
This fusion approach combines the strengths of both modalities:
|
12 |
+
- Images provide visual evidence of abnormalities
|
13 |
+
- Text reports provide context, history and radiologist interpretations
|
14 |
+
|
15 |
+
The combined analysis provides a more comprehensive understanding than either modality alone.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def __init__(self, image_model=None, text_model=None, device=None):
|
19 |
+
"""
|
20 |
+
Initialize the multimodal fusion module with image and text analyzers.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
image_model (str, optional): Model to use for image analysis
|
24 |
+
text_model (str, optional): Model to use for text analysis
|
25 |
+
device (str, optional): Device to run models on ('cuda' or 'cpu')
|
26 |
+
"""
|
27 |
+
self.logger = logging.getLogger(__name__)
|
28 |
+
|
29 |
+
# Determine device
|
30 |
+
if device is None:
|
31 |
+
import torch
|
32 |
+
|
33 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
else:
|
35 |
+
self.device = device
|
36 |
+
|
37 |
+
self.logger.info(f"Using device: {self.device}")
|
38 |
+
|
39 |
+
# Initialize image analyzer
|
40 |
+
try:
|
41 |
+
self.image_analyzer = XRayImageAnalyzer(
|
42 |
+
model_name=image_model
|
43 |
+
if image_model
|
44 |
+
else "codewithdark/vit-chest-xray",
|
45 |
+
device=self.device,
|
46 |
+
)
|
47 |
+
self.logger.info("Successfully initialized image analyzer")
|
48 |
+
except Exception as e:
|
49 |
+
self.logger.error(f"Failed to initialize image analyzer: {e}")
|
50 |
+
self.image_analyzer = None
|
51 |
+
|
52 |
+
# Initialize text analyzer
|
53 |
+
try:
|
54 |
+
self.text_analyzer = MedicalReportAnalyzer(
|
55 |
+
classifier_model=text_model if text_model else "medicalai/ClinicalBERT",
|
56 |
+
device=self.device,
|
57 |
+
)
|
58 |
+
self.logger.info("Successfully initialized text analyzer")
|
59 |
+
except Exception as e:
|
60 |
+
self.logger.error(f"Failed to initialize text analyzer: {e}")
|
61 |
+
self.text_analyzer = None
|
62 |
+
|
63 |
+
def analyze_image(self, image_path):
|
64 |
+
"""
|
65 |
+
Analyze a medical image.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
image_path (str): Path to the medical image
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
dict: Image analysis results
|
72 |
+
"""
|
73 |
+
if not self.image_analyzer:
|
74 |
+
self.logger.warning("Image analyzer not available")
|
75 |
+
return {"error": "Image analyzer not available"}
|
76 |
+
|
77 |
+
try:
|
78 |
+
return self.image_analyzer.analyze(image_path)
|
79 |
+
except Exception as e:
|
80 |
+
self.logger.error(f"Error analyzing image: {e}")
|
81 |
+
return {"error": str(e)}
|
82 |
+
|
83 |
+
def analyze_text(self, text):
|
84 |
+
"""
|
85 |
+
Analyze medical report text.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
text (str): Medical report text
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
dict: Text analysis results
|
92 |
+
"""
|
93 |
+
if not self.text_analyzer:
|
94 |
+
self.logger.warning("Text analyzer not available")
|
95 |
+
return {"error": "Text analyzer not available"}
|
96 |
+
|
97 |
+
try:
|
98 |
+
return self.text_analyzer.analyze(text)
|
99 |
+
except Exception as e:
|
100 |
+
self.logger.error(f"Error analyzing text: {e}")
|
101 |
+
return {"error": str(e)}
|
102 |
+
|
103 |
+
def _calculate_agreement_score(self, image_results, text_results):
|
104 |
+
"""
|
105 |
+
Calculate agreement score between image and text analyses.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
image_results (dict): Results from image analysis
|
109 |
+
text_results (dict): Results from text analysis
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
float: Agreement score (0-1, where 1 is perfect agreement)
|
113 |
+
"""
|
114 |
+
try:
|
115 |
+
# Default to neutral agreement
|
116 |
+
agreement = 0.5
|
117 |
+
|
118 |
+
# Check if image detected abnormality
|
119 |
+
image_abnormal = image_results.get("has_abnormality", False)
|
120 |
+
|
121 |
+
# Check text severity
|
122 |
+
text_severity = text_results.get("severity", {}).get("level", "Unknown")
|
123 |
+
text_abnormal = text_severity not in ["Normal", "Unknown"]
|
124 |
+
|
125 |
+
# Basic agreement check
|
126 |
+
if image_abnormal == text_abnormal:
|
127 |
+
agreement += 0.25
|
128 |
+
else:
|
129 |
+
agreement -= 0.25
|
130 |
+
|
131 |
+
# Check if specific findings match
|
132 |
+
image_finding = image_results.get("primary_finding", "").lower()
|
133 |
+
|
134 |
+
# Extract problem entities from text
|
135 |
+
problems = text_results.get("entities", {}).get("problem", [])
|
136 |
+
problem_text = " ".join(problems).lower()
|
137 |
+
|
138 |
+
# Check for common keywords in both
|
139 |
+
common_conditions = [
|
140 |
+
"pneumonia",
|
141 |
+
"effusion",
|
142 |
+
"nodule",
|
143 |
+
"mass",
|
144 |
+
"cardiomegaly",
|
145 |
+
"opacity",
|
146 |
+
"fracture",
|
147 |
+
"tumor",
|
148 |
+
"edema",
|
149 |
+
]
|
150 |
+
|
151 |
+
matching_conditions = 0
|
152 |
+
total_mentioned = 0
|
153 |
+
|
154 |
+
for condition in common_conditions:
|
155 |
+
in_image = condition in image_finding
|
156 |
+
in_text = condition in problem_text
|
157 |
+
|
158 |
+
if in_image or in_text:
|
159 |
+
total_mentioned += 1
|
160 |
+
|
161 |
+
if in_image and in_text:
|
162 |
+
matching_conditions += 1
|
163 |
+
agreement += 0.05 # Boost agreement for each matching condition
|
164 |
+
|
165 |
+
# Calculate condition match ratio if any conditions were mentioned
|
166 |
+
if total_mentioned > 0:
|
167 |
+
match_ratio = matching_conditions / total_mentioned
|
168 |
+
agreement += match_ratio * 0.2
|
169 |
+
|
170 |
+
# Normalize agreement to 0-1 range
|
171 |
+
agreement = max(0, min(1, agreement))
|
172 |
+
|
173 |
+
return agreement
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
self.logger.error(f"Error calculating agreement score: {e}")
|
177 |
+
return 0.5 # Return neutral agreement on error
|
178 |
+
|
179 |
+
def _get_confidence_weighted_finding(self, image_results, text_results, agreement):
|
180 |
+
"""
|
181 |
+
Get the most confident finding weighted by modality confidence.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
image_results (dict): Results from image analysis
|
185 |
+
text_results (dict): Results from text analysis
|
186 |
+
agreement (float): Agreement score between modalities
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
str: Most confident finding
|
190 |
+
"""
|
191 |
+
try:
|
192 |
+
image_finding = image_results.get("primary_finding", "")
|
193 |
+
image_confidence = image_results.get("confidence", 0.5)
|
194 |
+
|
195 |
+
# For text, use the most severe problem as primary finding
|
196 |
+
problems = text_results.get("entities", {}).get("problem", [])
|
197 |
+
|
198 |
+
text_confidence = text_results.get("severity", {}).get("confidence", 0.5)
|
199 |
+
|
200 |
+
if not problems:
|
201 |
+
# No problems identified in text
|
202 |
+
if image_confidence > 0.7:
|
203 |
+
return image_finding
|
204 |
+
else:
|
205 |
+
return "No significant findings"
|
206 |
+
|
207 |
+
# Simple confidence-weighted selection
|
208 |
+
if image_confidence > text_confidence + 0.2:
|
209 |
+
return image_finding
|
210 |
+
elif problems and text_confidence > image_confidence + 0.2:
|
211 |
+
return (
|
212 |
+
problems[0]
|
213 |
+
if isinstance(problems, list) and problems
|
214 |
+
else "Unknown finding"
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
# Similar confidence, check agreement
|
218 |
+
if agreement > 0.7:
|
219 |
+
# High agreement, try to find the specific condition mentioned in both
|
220 |
+
for problem in problems:
|
221 |
+
if problem.lower() in image_finding.lower():
|
222 |
+
return problem
|
223 |
+
|
224 |
+
# Default to image finding if high confidence
|
225 |
+
if image_confidence > 0.6:
|
226 |
+
return image_finding
|
227 |
+
elif problems:
|
228 |
+
return problems[0]
|
229 |
+
else:
|
230 |
+
return image_finding
|
231 |
+
else:
|
232 |
+
# Low agreement, include both perspectives
|
233 |
+
if image_finding and problems:
|
234 |
+
return f"{image_finding} (image) / {problems[0]} (report)"
|
235 |
+
elif image_finding:
|
236 |
+
return image_finding
|
237 |
+
elif problems:
|
238 |
+
return problems[0]
|
239 |
+
else:
|
240 |
+
return "Findings unclear - review recommended"
|
241 |
+
|
242 |
+
except Exception as e:
|
243 |
+
self.logger.error(f"Error getting weighted finding: {e}")
|
244 |
+
return "Unable to determine primary finding"
|
245 |
+
|
246 |
+
def _merge_followup_recommendations(self, image_results, text_results):
|
247 |
+
"""
|
248 |
+
Merge follow-up recommendations from both modalities.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
image_results (dict): Results from image analysis
|
252 |
+
text_results (dict): Results from text analysis
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
list: Combined follow-up recommendations
|
256 |
+
"""
|
257 |
+
try:
|
258 |
+
# Get text-based recommendations
|
259 |
+
text_recommendations = text_results.get("followup_recommendations", [])
|
260 |
+
|
261 |
+
# Create image-based recommendations based on findings
|
262 |
+
image_recommendations = []
|
263 |
+
|
264 |
+
if image_results.get("has_abnormality", False):
|
265 |
+
primary = image_results.get("primary_finding", "")
|
266 |
+
confidence = image_results.get("confidence", 0)
|
267 |
+
|
268 |
+
if (
|
269 |
+
"nodule" in primary.lower()
|
270 |
+
or "mass" in primary.lower()
|
271 |
+
or "tumor" in primary.lower()
|
272 |
+
):
|
273 |
+
image_recommendations.append(
|
274 |
+
f"Follow-up imaging recommended to further evaluate {primary}."
|
275 |
+
)
|
276 |
+
elif "pneumonia" in primary.lower():
|
277 |
+
image_recommendations.append(
|
278 |
+
"Clinical correlation and follow-up imaging recommended."
|
279 |
+
)
|
280 |
+
elif confidence > 0.8:
|
281 |
+
image_recommendations.append(
|
282 |
+
f"Consider follow-up imaging to monitor {primary}."
|
283 |
+
)
|
284 |
+
elif confidence > 0.5:
|
285 |
+
image_recommendations.append(
|
286 |
+
"Consider clinical correlation and potential follow-up."
|
287 |
+
)
|
288 |
+
|
289 |
+
# Combine recommendations, removing duplicates
|
290 |
+
all_recommendations = text_recommendations + image_recommendations
|
291 |
+
|
292 |
+
# Remove near-duplicates (similar recommendations)
|
293 |
+
unique_recommendations = []
|
294 |
+
for rec in all_recommendations:
|
295 |
+
if not any(
|
296 |
+
self._is_similar_recommendation(rec, existing)
|
297 |
+
for existing in unique_recommendations
|
298 |
+
):
|
299 |
+
unique_recommendations.append(rec)
|
300 |
+
|
301 |
+
return unique_recommendations
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
self.logger.error(f"Error merging follow-up recommendations: {e}")
|
305 |
+
return ["Follow-up recommended based on findings."]
|
306 |
+
|
307 |
+
def _is_similar_recommendation(self, rec1, rec2):
|
308 |
+
"""Check if two recommendations are semantically similar."""
|
309 |
+
# Convert to lowercase for comparison
|
310 |
+
rec1_lower = rec1.lower()
|
311 |
+
rec2_lower = rec2.lower()
|
312 |
+
|
313 |
+
# Check for significant overlap
|
314 |
+
words1 = set(rec1_lower.split())
|
315 |
+
words2 = set(rec2_lower.split())
|
316 |
+
|
317 |
+
# Calculate Jaccard similarity
|
318 |
+
intersection = words1.intersection(words2)
|
319 |
+
union = words1.union(words2)
|
320 |
+
|
321 |
+
similarity = len(intersection) / len(union) if union else 0
|
322 |
+
|
323 |
+
# Consider similar if more than 60% overlap
|
324 |
+
return similarity > 0.6
|
325 |
+
|
326 |
+
def _get_final_severity(self, image_results, text_results, agreement):
|
327 |
+
"""
|
328 |
+
Determine final severity based on both modalities.
|
329 |
+
|
330 |
+
Args:
|
331 |
+
image_results (dict): Results from image analysis
|
332 |
+
text_results (dict): Results from text analysis
|
333 |
+
agreement (float): Agreement score between modalities
|
334 |
+
|
335 |
+
Returns:
|
336 |
+
dict: Final severity assessment
|
337 |
+
"""
|
338 |
+
try:
|
339 |
+
# Get text-based severity
|
340 |
+
text_severity = text_results.get("severity", {})
|
341 |
+
text_level = text_severity.get("level", "Unknown")
|
342 |
+
text_score = text_severity.get("score", 0)
|
343 |
+
text_confidence = text_severity.get("confidence", 0.5)
|
344 |
+
|
345 |
+
# Convert image findings to severity
|
346 |
+
image_abnormal = image_results.get("has_abnormality", False)
|
347 |
+
image_confidence = image_results.get("confidence", 0.5)
|
348 |
+
|
349 |
+
# Default severity mapping from image
|
350 |
+
image_severity = "Normal" if not image_abnormal else "Moderate"
|
351 |
+
image_score = 0 if not image_abnormal else 2.0
|
352 |
+
|
353 |
+
# Adjust image severity based on specific findings
|
354 |
+
primary_finding = image_results.get("primary_finding", "").lower()
|
355 |
+
|
356 |
+
# Map certain conditions to severity levels
|
357 |
+
severity_mapping = {
|
358 |
+
"pneumonia": ("Moderate", 2.5),
|
359 |
+
"pneumothorax": ("Severe", 3.0),
|
360 |
+
"effusion": ("Moderate", 2.0),
|
361 |
+
"pulmonary edema": ("Moderate", 2.5),
|
362 |
+
"nodule": ("Mild", 1.5),
|
363 |
+
"mass": ("Moderate", 2.5),
|
364 |
+
"tumor": ("Severe", 3.0),
|
365 |
+
"cardiomegaly": ("Mild", 1.5),
|
366 |
+
"fracture": ("Moderate", 2.0),
|
367 |
+
"consolidation": ("Moderate", 2.0),
|
368 |
+
}
|
369 |
+
|
370 |
+
# Check if any key terms are in the primary finding
|
371 |
+
for key, (severity, score) in severity_mapping.items():
|
372 |
+
if key in primary_finding:
|
373 |
+
image_severity = severity
|
374 |
+
image_score = score
|
375 |
+
break
|
376 |
+
|
377 |
+
# Weight based on confidence and agreement
|
378 |
+
if agreement > 0.7:
|
379 |
+
# High agreement - weight equally
|
380 |
+
final_score = (image_score + text_score) / 2
|
381 |
+
else:
|
382 |
+
# Lower agreement - weight by confidence
|
383 |
+
total_confidence = image_confidence + text_confidence
|
384 |
+
if total_confidence > 0:
|
385 |
+
image_weight = image_confidence / total_confidence
|
386 |
+
text_weight = text_confidence / total_confidence
|
387 |
+
final_score = (image_score * image_weight) + (
|
388 |
+
text_score * text_weight
|
389 |
+
)
|
390 |
+
else:
|
391 |
+
final_score = (image_score + text_score) / 2
|
392 |
+
|
393 |
+
# Map score to severity level
|
394 |
+
severity_levels = {
|
395 |
+
0: "Normal",
|
396 |
+
1: "Mild",
|
397 |
+
2: "Moderate",
|
398 |
+
3: "Severe",
|
399 |
+
4: "Critical",
|
400 |
+
}
|
401 |
+
|
402 |
+
# Round to nearest level
|
403 |
+
level_index = round(min(4, max(0, final_score)))
|
404 |
+
final_level = severity_levels[level_index]
|
405 |
+
|
406 |
+
return {
|
407 |
+
"level": final_level,
|
408 |
+
"score": round(final_score, 1),
|
409 |
+
"confidence": round((image_confidence + text_confidence) / 2, 2),
|
410 |
+
}
|
411 |
+
|
412 |
+
except Exception as e:
|
413 |
+
self.logger.error(f"Error determining final severity: {e}")
|
414 |
+
return {"level": "Unknown", "score": 0, "confidence": 0}
|
415 |
+
|
416 |
+
def fuse_analyses(self, image_results, text_results):
|
417 |
+
"""
|
418 |
+
Fuse the results from image and text analyses.
|
419 |
+
|
420 |
+
Args:
|
421 |
+
image_results (dict): Results from image analysis
|
422 |
+
text_results (dict): Results from text analysis
|
423 |
+
|
424 |
+
Returns:
|
425 |
+
dict: Fused analysis results
|
426 |
+
"""
|
427 |
+
try:
|
428 |
+
# Calculate agreement between modalities
|
429 |
+
agreement = self._calculate_agreement_score(image_results, text_results)
|
430 |
+
self.logger.info(f"Agreement score between modalities: {agreement:.2f}")
|
431 |
+
|
432 |
+
# Get confidence-weighted primary finding
|
433 |
+
primary_finding = self._get_confidence_weighted_finding(
|
434 |
+
image_results, text_results, agreement
|
435 |
+
)
|
436 |
+
|
437 |
+
# Merge follow-up recommendations
|
438 |
+
followup = self._merge_followup_recommendations(image_results, text_results)
|
439 |
+
|
440 |
+
# Get final severity assessment
|
441 |
+
severity = self._get_final_severity(image_results, text_results, agreement)
|
442 |
+
|
443 |
+
# Create comprehensive findings list
|
444 |
+
findings = []
|
445 |
+
|
446 |
+
# Add text-extracted findings
|
447 |
+
text_findings = text_results.get("findings", [])
|
448 |
+
if text_findings:
|
449 |
+
findings.extend(text_findings)
|
450 |
+
|
451 |
+
# Add primary image finding if not already included
|
452 |
+
image_finding = image_results.get("primary_finding", "")
|
453 |
+
if image_finding and not any(
|
454 |
+
image_finding.lower() in f.lower() for f in findings
|
455 |
+
):
|
456 |
+
findings.append(f"Image finding: {image_finding}")
|
457 |
+
|
458 |
+
# Create fused result
|
459 |
+
fused_result = {
|
460 |
+
"agreement_score": round(agreement, 2),
|
461 |
+
"primary_finding": primary_finding,
|
462 |
+
"severity": severity,
|
463 |
+
"findings": findings,
|
464 |
+
"followup_recommendations": followup,
|
465 |
+
"modality_results": {"image": image_results, "text": text_results},
|
466 |
+
}
|
467 |
+
|
468 |
+
return fused_result
|
469 |
+
|
470 |
+
except Exception as e:
|
471 |
+
self.logger.error(f"Error fusing analyses: {e}")
|
472 |
+
return {
|
473 |
+
"error": str(e),
|
474 |
+
"modality_results": {"image": image_results, "text": text_results},
|
475 |
+
}
|
476 |
+
|
477 |
+
def analyze(self, image_path, report_text):
|
478 |
+
"""
|
479 |
+
Perform multimodal analysis of medical image and report.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
image_path (str): Path to the medical image
|
483 |
+
report_text (str): Medical report text
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
dict: Fused analysis results
|
487 |
+
"""
|
488 |
+
try:
|
489 |
+
# Analyze image
|
490 |
+
image_results = self.analyze_image(image_path)
|
491 |
+
|
492 |
+
# Analyze text
|
493 |
+
text_results = self.analyze_text(report_text)
|
494 |
+
|
495 |
+
# Fuse the analyses
|
496 |
+
return self.fuse_analyses(image_results, text_results)
|
497 |
+
|
498 |
+
except Exception as e:
|
499 |
+
self.logger.error(f"Error in multimodal analysis: {e}")
|
500 |
+
return {"error": str(e)}
|
501 |
+
|
502 |
+
def get_explanation(self, fused_results):
|
503 |
+
"""
|
504 |
+
Generate a human-readable explanation of the fused analysis.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
fused_results (dict): Results from the fused analysis
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
str: A text explanation of the fused analysis
|
511 |
+
"""
|
512 |
+
try:
|
513 |
+
explanation = []
|
514 |
+
|
515 |
+
# Add overview section
|
516 |
+
primary_finding = fused_results.get("primary_finding", "Unknown")
|
517 |
+
severity = fused_results.get("severity", {}).get("level", "Unknown")
|
518 |
+
|
519 |
+
explanation.append("# Medical Analysis Summary\n")
|
520 |
+
explanation.append("## Overview\n")
|
521 |
+
explanation.append(f"Primary finding: **{primary_finding}**\n")
|
522 |
+
explanation.append(f"Severity level: **{severity}**\n")
|
523 |
+
|
524 |
+
# Add agreement information
|
525 |
+
agreement = fused_results.get("agreement_score", 0)
|
526 |
+
agreement_text = (
|
527 |
+
"High" if agreement > 0.7 else "Moderate" if agreement > 0.4 else "Low"
|
528 |
+
)
|
529 |
+
|
530 |
+
explanation.append(
|
531 |
+
f"Image and text analysis agreement: **{agreement_text}** ({agreement:.0%})\n"
|
532 |
+
)
|
533 |
+
|
534 |
+
# Add findings section
|
535 |
+
explanation.append("\n## Detailed Findings\n")
|
536 |
+
findings = fused_results.get("findings", [])
|
537 |
+
|
538 |
+
if findings:
|
539 |
+
for finding in findings:
|
540 |
+
explanation.append(f"- {finding}\n")
|
541 |
+
else:
|
542 |
+
explanation.append("No specific findings detailed.\n")
|
543 |
+
|
544 |
+
# Add follow-up section
|
545 |
+
explanation.append("\n## Recommended Follow-up\n")
|
546 |
+
followups = fused_results.get("followup_recommendations", [])
|
547 |
+
|
548 |
+
if followups:
|
549 |
+
for followup in followups:
|
550 |
+
explanation.append(f"- {followup}\n")
|
551 |
+
else:
|
552 |
+
explanation.append("No specific follow-up recommendations provided.\n")
|
553 |
+
|
554 |
+
# Add confidence note
|
555 |
+
confidence = fused_results.get("severity", {}).get("confidence", 0)
|
556 |
+
explanation.append(
|
557 |
+
f"\n*Note: This analysis has a confidence level of {confidence:.0%}. "
|
558 |
+
f"Please consult with healthcare professionals for official diagnosis.*"
|
559 |
+
)
|
560 |
+
|
561 |
+
return "\n".join(explanation)
|
562 |
+
|
563 |
+
except Exception as e:
|
564 |
+
self.logger.error(f"Error generating explanation: {e}")
|
565 |
+
return "Error generating analysis explanation."
|
566 |
+
|
567 |
+
|
568 |
+
# Example usage
|
569 |
+
if __name__ == "__main__":
|
570 |
+
# Set up logging
|
571 |
+
logging.basicConfig(level=logging.INFO)
|
572 |
+
|
573 |
+
# Test on sample data if available
|
574 |
+
import os
|
575 |
+
|
576 |
+
fusion = MultimodalFusion()
|
577 |
+
|
578 |
+
# Sample text report
|
579 |
+
sample_report = """
|
580 |
+
CHEST X-RAY EXAMINATION
|
581 |
+
|
582 |
+
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
583 |
+
|
584 |
+
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
585 |
+
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
586 |
+
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
587 |
+
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
588 |
+
|
589 |
+
IMPRESSION:
|
590 |
+
1. Mild cardiomegaly.
|
591 |
+
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
592 |
+
3. No acute pulmonary parenchymal abnormality.
|
593 |
+
|
594 |
+
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
595 |
+
"""
|
596 |
+
|
597 |
+
# Check if sample data directory exists and contains images
|
598 |
+
sample_dir = "../data/sample"
|
599 |
+
if os.path.exists(sample_dir) and os.listdir(sample_dir):
|
600 |
+
sample_image = os.path.join(sample_dir, os.listdir(sample_dir)[0])
|
601 |
+
print(f"Analyzing sample image: {sample_image}")
|
602 |
+
|
603 |
+
# Perform multimodal analysis
|
604 |
+
fused_results = fusion.analyze(sample_image, sample_report)
|
605 |
+
explanation = fusion.get_explanation(fused_results)
|
606 |
+
|
607 |
+
print("\nFused Analysis Results:")
|
608 |
+
print(explanation)
|
609 |
+
else:
|
610 |
+
print("No sample images found. Only analyzing text report.")
|
611 |
+
|
612 |
+
# Analyze just the text
|
613 |
+
text_results = fusion.analyze_text(sample_report)
|
614 |
+
|
615 |
+
print("\nText Analysis Results:")
|
616 |
+
print(
|
617 |
+
f"Severity: {text_results['severity']['level']} (Score: {text_results['severity']['score']})"
|
618 |
+
)
|
619 |
+
|
620 |
+
print("\nKey Findings:")
|
621 |
+
for finding in text_results["findings"]:
|
622 |
+
print(f"- {finding}")
|
623 |
+
|
624 |
+
print("\nEntities:")
|
625 |
+
for category, items in text_results["entities"].items():
|
626 |
+
if items:
|
627 |
+
print(f"- {category.capitalize()}: {', '.join(items)}")
|
628 |
+
|
629 |
+
print("\nFollow-up Recommendations:")
|
630 |
+
for rec in text_results["followup_recommendations"]:
|
631 |
+
print(f"- {rec}")
|