Andres77872's picture
Update app.py
0249c44 verified
import gradio as gr
import torch
from PIL import Image
import requests
import spaces
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList
base_model_id = "Andres77872/SmolVLM-500M-anime-caption-v0.2"
processor = AutoProcessor.from_pretrained(base_model_id)
model = Idefics3ForConditionalGeneration.from_pretrained(
base_model_id,
torch_dtype=torch.bfloat16
).to("cuda:0")
class StopOnTokens(StoppingCriteria):
def __init__(self, tokenizer, stop_sequence):
super().__init__()
self.tokenizer = tokenizer
self.stop_sequence = stop_sequence
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
new_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
max_keep = len(self.stop_sequence) + 10
if len(new_text) > max_keep:
new_text = new_text[-max_keep:]
return self.stop_sequence in new_text
@spaces.GPU
def caption_anime_image_stream(image):
if image is None:
yield "Please upload an image."
return
question = "describe the image"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question}
]
}
]
max_image_size = processor.image_processor.max_image_size["longest_edge"]
size = processor.image_processor.size.copy()
if "longest_edge" in size and size["longest_edge"] > max_image_size:
size["longest_edge"] = max_image_size
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
stop_sequence = "</RATING>"
streamer = TextIteratorStreamer(
processor.tokenizer,
skip_prompt=True,
skip_special_tokens=True,
)
custom_stopping_criteria = StoppingCriteriaList([
StopOnTokens(processor.tokenizer, stop_sequence)
])
with torch.no_grad():
generation_kwargs = dict(
**inputs,
streamer=streamer,
do_sample=False,
max_new_tokens=1024,
pad_token_id=processor.tokenizer.pad_token_id,
stopping_criteria=custom_stopping_criteria,
)
import threading
generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
generation_thread.start()
caption = ""
for new_text in streamer:
caption += new_text
yield caption.strip()
generation_thread.join()
demo = gr.Interface(
caption_anime_image_stream,
inputs=gr.Image(type="pil", label="Anime Image"),
outputs=gr.Textbox(lines=8, label="Caption"),
title="SmolVLM-500M-anime-caption-v0.2 Demo",
description="Upload an anime-style image to generate a caption.",
# Enable live streaming:
allow_flagging="auto",
examples=None,
)
demo.queue()
demo.launch()