File size: 3,148 Bytes
0842d98
fb1e20b
 
 
b459e11
fb1e20b
0842d98
0249c44
0842d98
fb1e20b
 
 
 
b71dc51
fb1e20b
 
 
 
 
 
 
 
 
 
 
 
 
 
b71dc51
 
 
 
 
 
fb1e20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71dc51
0249c44
fb1e20b
 
 
 
 
 
 
 
 
 
 
 
 
0249c44
fb1e20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0249c44
fb1e20b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
import torch
from PIL import Image
import requests
import spaces
from transformers import AutoProcessor, Idefics3ForConditionalGeneration, TextIteratorStreamer, StoppingCriteria, StoppingCriteriaList

base_model_id = "Andres77872/SmolVLM-500M-anime-caption-v0.2"

processor = AutoProcessor.from_pretrained(base_model_id)
model = Idefics3ForConditionalGeneration.from_pretrained(
    base_model_id,
    torch_dtype=torch.bfloat16
).to("cuda:0")

class StopOnTokens(StoppingCriteria):
    def __init__(self, tokenizer, stop_sequence):
        super().__init__()
        self.tokenizer = tokenizer
        self.stop_sequence = stop_sequence

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        new_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
        max_keep = len(self.stop_sequence) + 10
        if len(new_text) > max_keep:
            new_text = new_text[-max_keep:]
        return self.stop_sequence in new_text

@spaces.GPU
def caption_anime_image_stream(image):
    if image is None:
        yield "Please upload an image."
        return
    
    question = "describe the image"
    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image"},
                {"type": "text", "text": question}
            ]
        }
    ]
    max_image_size = processor.image_processor.max_image_size["longest_edge"]
    size = processor.image_processor.size.copy()
    if "longest_edge" in size and size["longest_edge"] > max_image_size:
        size["longest_edge"] = max_image_size
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=[prompt], images=[[image]], return_tensors='pt', padding=True, size=size)
    inputs = {k: v.to(model.device) for k, v in inputs.items()}
    
    stop_sequence = "</RATING>"
    streamer = TextIteratorStreamer(
        processor.tokenizer,
        skip_prompt=True,
        skip_special_tokens=True,
    )
    custom_stopping_criteria = StoppingCriteriaList([
        StopOnTokens(processor.tokenizer, stop_sequence)
    ])
    with torch.no_grad():
        generation_kwargs = dict(
            **inputs,
            streamer=streamer,
            do_sample=False,
            max_new_tokens=1024,
            pad_token_id=processor.tokenizer.pad_token_id,
            stopping_criteria=custom_stopping_criteria,
        )
        import threading
        generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
        generation_thread.start()
        caption = ""
        for new_text in streamer:
            caption += new_text
            yield caption.strip()
        generation_thread.join()

demo = gr.Interface(
    caption_anime_image_stream,
    inputs=gr.Image(type="pil", label="Anime Image"),
    outputs=gr.Textbox(lines=8, label="Caption"),
    title="SmolVLM-500M-anime-caption-v0.2 Demo",
    description="Upload an anime-style image to generate a caption.",
    # Enable live streaming:
    allow_flagging="auto",
    examples=None,
)

demo.queue()
demo.launch()