Ashrafb commited on
Commit
07aa944
·
verified ·
1 Parent(s): a1860b2

Delete vtoonify/model/encoder/vtoonify_model_encoder_align_all_parallel.py

Browse files
vtoonify/model/encoder/vtoonify_model_encoder_align_all_parallel.py DELETED
@@ -1,181 +0,0 @@
1
- from argparse import ArgumentParser
2
- import time
3
- import numpy as np
4
- import PIL
5
- import PIL.Image
6
- import os
7
- import scipy
8
- import scipy.ndimage
9
- import insightface
10
- import multiprocessing as mp
11
- import math
12
-
13
- def get_landmark(filepath, face_detector):
14
- """get landmark with InsightFace
15
- :return: np.array shape=(68, 2)
16
- """
17
- if isinstance(filepath, str):
18
- img = PIL.Image.open(filepath)
19
- img = np.array(img)
20
- else:
21
- img = filepath
22
-
23
- faces = face_detector.get(img)
24
-
25
- if len(faces) == 0:
26
- print('Error: no face detected!')
27
- return None
28
-
29
- # Assume the first detected face is the target
30
- face = faces[0]
31
- lm = face.landmark_2d_106[:, :2] # Use 106-point landmarks
32
- return lm
33
-
34
- def align_face(filepath, face_detector):
35
- """
36
- :param filepath: str
37
- :return: PIL Image
38
- """
39
- lm = get_landmark(filepath, face_detector)
40
- if lm is None:
41
- return None
42
-
43
- # Use the same landmark indices as before
44
- lm_eye_left = lm[36: 42] # left-clockwise
45
- lm_eye_right = lm[42: 48] # left-clockwise
46
- lm_mouth_outer = lm[48: 60] # left-clockwise
47
-
48
- # Calculate auxiliary vectors.
49
- eye_left = np.mean(lm_eye_left, axis=0)
50
- eye_right = np.mean(lm_eye_right, axis=0)
51
- eye_avg = (eye_left + eye_right) * 0.5
52
- eye_to_eye = eye_right - eye_left
53
- mouth_left = lm_mouth_outer[0]
54
- mouth_right = lm_mouth_outer[6]
55
- mouth_avg = (mouth_left + mouth_right) * 0.5
56
- eye_to_mouth = mouth_avg - eye_avg
57
-
58
- # Choose oriented crop rectangle.
59
- x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
60
- x /= np.hypot(*x)
61
- x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
62
- y = np.flipud(x) * [-1, 1]
63
- c = eye_avg + eye_to_mouth * 0.1
64
- quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
65
- qsize = np.hypot(*x) * 2
66
-
67
- # read image
68
- if isinstance(filepath, str):
69
- img = PIL.Image.open(filepath)
70
- else:
71
- img = PIL.Image.fromarray(filepath)
72
-
73
- output_size = 256
74
- transform_size = 256
75
- enable_padding = True
76
-
77
- # Shrink.
78
- shrink = int(np.floor(qsize / output_size * 0.5))
79
- if shrink > 1:
80
- rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
81
- img = img.resize(rsize, PIL.Image.ANTIALIAS)
82
- quad /= shrink
83
- qsize /= shrink
84
-
85
- # Crop.
86
- border = max(int(np.rint(qsize * 0.1)), 3)
87
- crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
88
- int(np.ceil(max(quad[:, 1]))))
89
- crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
90
- min(crop[3] + border, img.size[1]))
91
- if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
92
- img = img.crop(crop)
93
- quad -= crop[0:2]
94
-
95
- # Pad.
96
- pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
97
- int(np.ceil(max(quad[:, 1]))))
98
- pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
99
- max(pad[3] - img.size[1] + border, 0))
100
- if enable_padding and max(pad) > border - 4:
101
- pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
102
- img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
103
- h, w, _ = img.shape
104
- y, x, _ = np.ogrid[:h, :w, :1]
105
- mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
106
- 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
107
- blur = qsize * 0.02
108
- img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
109
- img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
110
- img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
111
- quad += pad[:2]
112
-
113
- # Transform.
114
- img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
115
- if output_size < transform_size:
116
- img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
117
-
118
- return img
119
-
120
- def chunks(lst, n):
121
- """Yield successive n-sized chunks from lst."""
122
- for i in range(0, len(lst), n):
123
- yield lst[i:i + n]
124
-
125
- def extract_on_paths(file_paths, face_detector):
126
- pid = mp.current_process().name
127
- print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
128
- tot_count = len(file_paths)
129
- count = 0
130
- for file_path, res_path in file_paths:
131
- count += 1
132
- if count % 100 == 0:
133
- print('{} done with {}/{}'.format(pid, count, tot_count))
134
- try:
135
- res = align_face(file_path, face_detector)
136
- res = res.convert('RGB')
137
- os.makedirs(os.path.dirname(res_path), exist_ok=True)
138
- res.save(res_path)
139
- except Exception:
140
- continue
141
- print('\tDone!')
142
-
143
- def parse_args():
144
- parser = ArgumentParser(add_help=False)
145
- parser.add_argument('--num_threads', type=int, default=1)
146
- parser.add_argument('--root_path', type=str, default='')
147
- args = parser.parse_args()
148
- return args
149
-
150
- def run(args):
151
- root_path = args.root_path
152
- out_crops_path = root_path + '_crops'
153
- if not os.path.exists(out_crops_path):
154
- os.makedirs(out_crops_path, exist_ok=True)
155
-
156
- file_paths = []
157
- for root, dirs, files in os.walk(root_path):
158
- for file in files:
159
- file_path = os.path.join(root, file)
160
- fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
161
- res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
162
- if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
163
- continue
164
- file_paths.append((file_path, res_path))
165
-
166
- file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
167
- print(len(file_chunks))
168
- pool = mp.Pool(args.num_threads)
169
- print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
170
- tic = time.time()
171
- pool.starmap(extract_on_paths, [(chunk, face_detector) for chunk in file_chunks])
172
- toc = time.time()
173
- print('Mischief managed in {}s'.format(toc - tic))
174
-
175
- if __name__ == '__main__':
176
- # Initialize InsightFace
177
- face_detector = insightface.app.FaceAnalysis()
178
- face_detector.prepare(ctx_id=-1, det_size=(640, 640)) # ctx_id=-1 for CPU
179
-
180
- args = parse_args()
181
- run(args)