Delete vtoonify/model/encoder/vtoonify_model_encoder_align_all_parallel.py
Browse files
vtoonify/model/encoder/vtoonify_model_encoder_align_all_parallel.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
from argparse import ArgumentParser
|
2 |
-
import time
|
3 |
-
import numpy as np
|
4 |
-
import PIL
|
5 |
-
import PIL.Image
|
6 |
-
import os
|
7 |
-
import scipy
|
8 |
-
import scipy.ndimage
|
9 |
-
import insightface
|
10 |
-
import multiprocessing as mp
|
11 |
-
import math
|
12 |
-
|
13 |
-
def get_landmark(filepath, face_detector):
|
14 |
-
"""get landmark with InsightFace
|
15 |
-
:return: np.array shape=(68, 2)
|
16 |
-
"""
|
17 |
-
if isinstance(filepath, str):
|
18 |
-
img = PIL.Image.open(filepath)
|
19 |
-
img = np.array(img)
|
20 |
-
else:
|
21 |
-
img = filepath
|
22 |
-
|
23 |
-
faces = face_detector.get(img)
|
24 |
-
|
25 |
-
if len(faces) == 0:
|
26 |
-
print('Error: no face detected!')
|
27 |
-
return None
|
28 |
-
|
29 |
-
# Assume the first detected face is the target
|
30 |
-
face = faces[0]
|
31 |
-
lm = face.landmark_2d_106[:, :2] # Use 106-point landmarks
|
32 |
-
return lm
|
33 |
-
|
34 |
-
def align_face(filepath, face_detector):
|
35 |
-
"""
|
36 |
-
:param filepath: str
|
37 |
-
:return: PIL Image
|
38 |
-
"""
|
39 |
-
lm = get_landmark(filepath, face_detector)
|
40 |
-
if lm is None:
|
41 |
-
return None
|
42 |
-
|
43 |
-
# Use the same landmark indices as before
|
44 |
-
lm_eye_left = lm[36: 42] # left-clockwise
|
45 |
-
lm_eye_right = lm[42: 48] # left-clockwise
|
46 |
-
lm_mouth_outer = lm[48: 60] # left-clockwise
|
47 |
-
|
48 |
-
# Calculate auxiliary vectors.
|
49 |
-
eye_left = np.mean(lm_eye_left, axis=0)
|
50 |
-
eye_right = np.mean(lm_eye_right, axis=0)
|
51 |
-
eye_avg = (eye_left + eye_right) * 0.5
|
52 |
-
eye_to_eye = eye_right - eye_left
|
53 |
-
mouth_left = lm_mouth_outer[0]
|
54 |
-
mouth_right = lm_mouth_outer[6]
|
55 |
-
mouth_avg = (mouth_left + mouth_right) * 0.5
|
56 |
-
eye_to_mouth = mouth_avg - eye_avg
|
57 |
-
|
58 |
-
# Choose oriented crop rectangle.
|
59 |
-
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
60 |
-
x /= np.hypot(*x)
|
61 |
-
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
62 |
-
y = np.flipud(x) * [-1, 1]
|
63 |
-
c = eye_avg + eye_to_mouth * 0.1
|
64 |
-
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
65 |
-
qsize = np.hypot(*x) * 2
|
66 |
-
|
67 |
-
# read image
|
68 |
-
if isinstance(filepath, str):
|
69 |
-
img = PIL.Image.open(filepath)
|
70 |
-
else:
|
71 |
-
img = PIL.Image.fromarray(filepath)
|
72 |
-
|
73 |
-
output_size = 256
|
74 |
-
transform_size = 256
|
75 |
-
enable_padding = True
|
76 |
-
|
77 |
-
# Shrink.
|
78 |
-
shrink = int(np.floor(qsize / output_size * 0.5))
|
79 |
-
if shrink > 1:
|
80 |
-
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
81 |
-
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
82 |
-
quad /= shrink
|
83 |
-
qsize /= shrink
|
84 |
-
|
85 |
-
# Crop.
|
86 |
-
border = max(int(np.rint(qsize * 0.1)), 3)
|
87 |
-
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
88 |
-
int(np.ceil(max(quad[:, 1]))))
|
89 |
-
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
90 |
-
min(crop[3] + border, img.size[1]))
|
91 |
-
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
92 |
-
img = img.crop(crop)
|
93 |
-
quad -= crop[0:2]
|
94 |
-
|
95 |
-
# Pad.
|
96 |
-
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
97 |
-
int(np.ceil(max(quad[:, 1]))))
|
98 |
-
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
99 |
-
max(pad[3] - img.size[1] + border, 0))
|
100 |
-
if enable_padding and max(pad) > border - 4:
|
101 |
-
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
102 |
-
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
103 |
-
h, w, _ = img.shape
|
104 |
-
y, x, _ = np.ogrid[:h, :w, :1]
|
105 |
-
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
106 |
-
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
107 |
-
blur = qsize * 0.02
|
108 |
-
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
109 |
-
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
110 |
-
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
111 |
-
quad += pad[:2]
|
112 |
-
|
113 |
-
# Transform.
|
114 |
-
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
115 |
-
if output_size < transform_size:
|
116 |
-
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
117 |
-
|
118 |
-
return img
|
119 |
-
|
120 |
-
def chunks(lst, n):
|
121 |
-
"""Yield successive n-sized chunks from lst."""
|
122 |
-
for i in range(0, len(lst), n):
|
123 |
-
yield lst[i:i + n]
|
124 |
-
|
125 |
-
def extract_on_paths(file_paths, face_detector):
|
126 |
-
pid = mp.current_process().name
|
127 |
-
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
|
128 |
-
tot_count = len(file_paths)
|
129 |
-
count = 0
|
130 |
-
for file_path, res_path in file_paths:
|
131 |
-
count += 1
|
132 |
-
if count % 100 == 0:
|
133 |
-
print('{} done with {}/{}'.format(pid, count, tot_count))
|
134 |
-
try:
|
135 |
-
res = align_face(file_path, face_detector)
|
136 |
-
res = res.convert('RGB')
|
137 |
-
os.makedirs(os.path.dirname(res_path), exist_ok=True)
|
138 |
-
res.save(res_path)
|
139 |
-
except Exception:
|
140 |
-
continue
|
141 |
-
print('\tDone!')
|
142 |
-
|
143 |
-
def parse_args():
|
144 |
-
parser = ArgumentParser(add_help=False)
|
145 |
-
parser.add_argument('--num_threads', type=int, default=1)
|
146 |
-
parser.add_argument('--root_path', type=str, default='')
|
147 |
-
args = parser.parse_args()
|
148 |
-
return args
|
149 |
-
|
150 |
-
def run(args):
|
151 |
-
root_path = args.root_path
|
152 |
-
out_crops_path = root_path + '_crops'
|
153 |
-
if not os.path.exists(out_crops_path):
|
154 |
-
os.makedirs(out_crops_path, exist_ok=True)
|
155 |
-
|
156 |
-
file_paths = []
|
157 |
-
for root, dirs, files in os.walk(root_path):
|
158 |
-
for file in files:
|
159 |
-
file_path = os.path.join(root, file)
|
160 |
-
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
|
161 |
-
res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
|
162 |
-
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
|
163 |
-
continue
|
164 |
-
file_paths.append((file_path, res_path))
|
165 |
-
|
166 |
-
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
|
167 |
-
print(len(file_chunks))
|
168 |
-
pool = mp.Pool(args.num_threads)
|
169 |
-
print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
|
170 |
-
tic = time.time()
|
171 |
-
pool.starmap(extract_on_paths, [(chunk, face_detector) for chunk in file_chunks])
|
172 |
-
toc = time.time()
|
173 |
-
print('Mischief managed in {}s'.format(toc - tic))
|
174 |
-
|
175 |
-
if __name__ == '__main__':
|
176 |
-
# Initialize InsightFace
|
177 |
-
face_detector = insightface.app.FaceAnalysis()
|
178 |
-
face_detector.prepare(ctx_id=-1, det_size=(640, 640)) # ctx_id=-1 for CPU
|
179 |
-
|
180 |
-
args = parse_args()
|
181 |
-
run(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|