Spaces:
Sleeping
Sleeping
# ====================================================================================== | |
# 1. SETUP: Patch SQLite and Import Libraries | |
# ====================================================================================== | |
# This MUST be the first import to ensure ChromaDB uses the correct SQLite version | |
import sys | |
import os | |
os.environ['PYSQLITE3_BUNDLED'] = '1' | |
__import__('pysqlite3') | |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3') | |
# Standard and third-party libraries | |
import json | |
import pandas as pd | |
from typing import List, Union | |
import chromadb | |
import gradio as gr | |
from pydantic import BaseModel, ValidationError | |
from sentence_transformers import SentenceTransformer, CrossEncoder | |
# LangChain imports | |
from langchain_openai.chat_models import ChatOpenAI | |
from langchain_community.vectorstores import Chroma | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.schema.runnable import RunnablePassthrough | |
from langchain.schema.output_parser import StrOutputParser | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_community.embeddings import SentenceTransformerEmbeddings | |
# ====================================================================================== | |
# 2. CONSTANTS AND CONFIGURATION | |
# ====================================================================================== | |
DB_DIR = "./chroma_db" | |
COLLECTION_NAME = "clinical_examples" | |
EMBEDDING_MODEL_NAME = "pritamdeka/S-Biomed-Roberta-snli-multinli-stsb" | |
RERANKER_MODEL_NAME = 'cross-encoder/ms-marco-MiniLM-L-6-v2' | |
DATASET_URL = "https://huggingface.co/datasets/DanFed/patient_encounters1_notes_preprocessed/raw/main/patient_encounters1_notes_preprocessed.csv" | |
# ====================================================================================== | |
# 3. DATABASE SETUP: One-time data loading and embedding | |
# ====================================================================================== | |
def setup_database(client: chromadb.Client): | |
""" | |
Loads data, generates embeddings, and populates the ChromaDB collection | |
only if it's empty. | |
""" | |
collection = client.get_or_create_collection(name=COLLECTION_NAME) | |
if collection.count() > 0: | |
print(f"Collection '{COLLECTION_NAME}' already exists with {collection.count()} documents. Skipping setup.") | |
return | |
print(f"Collection '{COLLECTION_NAME}' is empty. Starting data population...") | |
# Load dataset | |
df = pd.read_csv(DATASET_URL) | |
df.drop(['index', 'ENCOUNTER_ID', 'CLINICAL_NOTES', 'BIRTHDATE', 'FIRST', | |
'START', 'STOP', 'PATIENT_ID', 'ENCOUNTERCLASS', 'CODE', 'DESCRIPTION', | |
'BASE_ENCOUNTER_COST', 'TOTAL_CLAIM_COST', 'PAYER_COVERAGE', | |
'REASONCODE', 'REASONDESCRIPTION', 'PATIENT_AGE', | |
'DESCRIPTION_OBSERVATIONS', 'DESCRIPTION_CONDITIONS', | |
'DESCRIPTION_MEDICATIONS', 'DESCRIPTION_PROCEDURES', 'AGE_GROUP'], axis=1, inplace=True) | |
# Create example strings | |
def create_examples(row): | |
return f"Message: \n\n{row['ENCOUNTER_PROMPT'].strip()}\n\nResult: \n\n{row['COND_MED_PRO_STRUCTURED'].strip()}" | |
df['EXAMPLES'] = df.apply(create_examples, axis=1) | |
# Generate embeddings | |
model = SentenceTransformer(EMBEDDING_MODEL_NAME) | |
examples = df["EXAMPLES"].tolist() | |
embeddings = model.encode( | |
examples, | |
batch_size=32, | |
show_progress_bar=True, | |
convert_to_numpy=True | |
) | |
# Add to collection | |
collection.add( | |
documents=df["EXAMPLES"].tolist(), | |
embeddings=embeddings.tolist(), | |
ids=[str(i) for i in range(len(df["EXAMPLES"]))] | |
) | |
print(f"Successfully added {len(df['EXAMPLES'])} documents to the '{COLLECTION_NAME}' collection.") | |
# ====================================================================================== | |
# 4. APPLICATION GLOBALS AND AI COMPONENTS | |
# ====================================================================================== | |
# Pydantic schema for structured output | |
class ClinicalExtraction(BaseModel): | |
conditions: List[str] | |
medications: List[str] | |
procedures: List[str] | |
# Parser and format instructions | |
parser = PydanticOutputParser(pydantic_object=ClinicalExtraction) | |
format_instructions = parser.get_format_instructions().replace("{", "{{").replace("}", "}}") | |
# Global variables for AI components | |
LANGCHAIN_LLM = None | |
FINAL_PROMPT = None | |
FINAL_CHAIN = None | |
VECTOR_STORE = None | |
RERANKER = CrossEncoder(RERANKER_MODEL_NAME) | |
def initialize_ai_components(api_key: str): | |
"""Initializes all AI components needed for the RAG pipeline.""" | |
global LANGCHAIN_LLM, FINAL_PROMPT, FINAL_CHAIN | |
if not api_key: | |
raise gr.Error("OpenAI API Key is required!") | |
# LLM | |
LANGCHAIN_LLM = ChatOpenAI(openai_api_key=api_key, temperature=0.2) | |
# Prompt Template | |
FINAL_PROMPT = ChatPromptTemplate.from_template( | |
f"""You are a clinical information extractor. | |
Extract EXACTLY this JSON format and nothing else: | |
{format_instructions} | |
CONTEXT (examples): | |
{{context}} | |
INPUT MESSAGE (clinical note + surrounding metadata): | |
{{input}} | |
Result:""" | |
) | |
# RAG Chain | |
FINAL_CHAIN = ( | |
{"context": RunnablePassthrough(), "input": RunnablePassthrough()} | |
| FINAL_PROMPT | |
| LANGCHAIN_LLM | |
| StrOutputParser() | |
) | |
return "<p style='color:green;'>AI components initialized successfully!</p>" | |
# ====================================================================================== | |
# 5. RAG PIPELINE | |
# ====================================================================================== | |
def format_docs(docs): | |
"""Join doc.page_content with blank lines.""" | |
return "\n\n".join(d.page_content for d in docs) | |
def generate_rag_response(input_text: str) -> Union[dict, str]: | |
""" | |
Performs retrieval, reranking, generation, and validation. | |
""" | |
if not FINAL_CHAIN or not VECTOR_STORE: | |
return "Error: AI components not initialized. Please set your API key." | |
# Initial embedding retrieval (top 20) | |
retriever = VECTOR_STORE.as_retriever(search_kwargs={"k": 20}) | |
candidates = retriever.get_relevant_documents(input_text) | |
# Cross-encoder rerank -> top 5 | |
pairs = [(input_text, d.page_content) for d in candidates] | |
scores = RERANKER.predict(pairs) | |
sorted_docs = [d for _, d in sorted(zip(scores, candidates), reverse=True)] | |
top_docs = sorted_docs[:5] | |
# Build context and invoke chain | |
context = format_docs(top_docs) | |
raw_output = FINAL_CHAIN.invoke({"context": context, "input": input_text}) | |
# Parse and validate the output | |
try: | |
parsed = parser.parse(raw_output) | |
return parsed.dict() | |
except ValidationError as e: | |
return f"Schema validation failed: {e}. Raw output was: {raw_output}" | |
# ====================================================================================== | |
# 6. GRADIO UI | |
# ====================================================================================== | |
def create_gradio_ui(): | |
"""Defines and returns the Gradio UI blocks.""" | |
with gr.Blocks(title="Clinical Information Extractor") as demo: | |
gr.Markdown("# Clinical Information Extractor with RAG and Reranking") | |
with gr.Accordion("API Key Configuration", open=True): | |
key_box = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...") | |
key_btn = gr.Button("Set API Key") | |
key_status = gr.Markdown("") | |
key_btn.click(initialize_ai_components, inputs=[key_box], outputs=[key_status]) | |
gr.Markdown("---") | |
gr.Markdown("## Enter Clinical Note and Metadata") | |
with gr.Row(): | |
age_group_input = gr.Textbox(label="Age Group", placeholder="e.g., middle adulthood") | |
visit_type_input = gr.Textbox(label="Visit Type", placeholder="e.g., ambulatory") | |
description_input = gr.Textbox(label="Description", placeholder="e.g., encounter for check up (procedure)") | |
note_input = gr.Textbox(label="Clinical Note", placeholder="Type the clinical note here...", lines=5) | |
chatbot = gr.Chatbot(label="Extraction History", height=400) | |
send_btn = gr.Button("➡️ Extract Information") | |
def chat_interface(age, visit, desc, note, history): | |
history = history or [] | |
# Build full input with metadata | |
metadata_parts = [] | |
if age: metadata_parts.append(f"Age group: {age}") | |
if visit: metadata_parts.append(f"Visit type: {visit}") | |
if desc: metadata_parts.append(f"Description: {desc}") | |
metadata_str = " | ".join(metadata_parts) | |
full_input = f"{metadata_str}\n\nClinical Note:\n{note}" if metadata_str else note | |
user_display = f"**Metadata**: {metadata_str}\n\n**Note**: {note}" | |
# Get response from RAG pipeline | |
response = generate_rag_response(full_input) | |
# Format bot response | |
if isinstance(response, dict): | |
bot_response = f"```json\n{json.dumps(response, indent=2)}\n```" | |
else: | |
bot_response = str(response) | |
history.append((user_display, bot_response)) | |
return history, "" # Return updated history and clear the input textbox | |
send_btn.click( | |
fn=chat_interface, | |
inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot], | |
outputs=[chatbot, note_input] | |
) | |
note_input.submit( | |
fn=chat_interface, | |
inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot], | |
outputs=[chatbot, note_input] | |
) | |
return demo | |
# ====================================================================================== | |
# 7. MAIN EXECUTION | |
# ====================================================================================== | |
def main(): | |
""" | |
Main function to set up the database, initialize components, and launch the UI. | |
""" | |
global VECTOR_STORE | |
# 1. Setup ChromaDB client | |
client = chromadb.PersistentClient(path=DB_DIR) | |
# 2. Populate the database if needed | |
setup_database(client) | |
# 3. Initialize the LangChain vector store wrapper | |
embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
VECTOR_STORE = Chroma( | |
client=client, | |
collection_name=COLLECTION_NAME, | |
embedding_function=embeddings, | |
) | |
print(f"Vector store initialized with {VECTOR_STORE._collection.count()} documents.") | |
# 4. Create and launch the Gradio UI | |
demo = create_gradio_ui() | |
print("Launching Clinical IE Demo...") | |
demo.launch(server_name="0.0.0.0") | |
if __name__ == "__main__": | |
main() |