HR-1 / app.py
DreamStream-1's picture
Update app.py
ebdf65e verified
raw
history blame
8.21 kB
import os
import re
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import gradio as gr
# Set your API key for Groq
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
"""Extracts text from PDF or TXT files based on file extension."""
if file_path.endswith('.pdf'):
return extract_text_from_pdf(file_path)
elif file_path.endswith('.txt'):
return extract_text_from_txt(file_path)
else:
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
def extract_text_from_pdf(pdf_file_path):
"""Extracts text from a PDF file."""
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
return text
def extract_text_from_txt(txt_file_path):
"""Extracts text from a .txt file."""
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
return txt_file.read()
# --- Skill Extraction with Llama Model --- #
def extract_skills_llama(text):
"""Extracts skills from the text using the Llama model via Groq API."""
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
model="llama3-70b-8192",
)
skills = response.choices[0].message.content.split(', ') # Expecting a comma-separated list
return skills
except Exception as e:
raise RuntimeError(f"Error during skill extraction: {e}")
# --- Job Description Processing Function --- #
def process_job_description(text):
"""Extracts skills or relevant keywords from the job description."""
return extract_skills_llama(text)
# --- Qualification and Experience Extraction --- #
def extract_qualifications(text):
"""Extracts qualifications from text (e.g., degrees, certifications)."""
qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
return qualifications if qualifications else ['No specific qualifications found']
def extract_experience(text):
"""Extracts years of experience from the text."""
experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
experience_years = [int(year[0]) for year in experience_years]
return experience_years, job_titles
# --- Updated Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
if not resume_file or not job_description_file:
return "", "", "", "Please upload both files."
# Load and preprocess resume and job description
resume_text = extract_text_from_file(resume_file)
job_description_text = extract_text_from_file(job_description_file)
# Extract skills, qualifications, and experience from the resume
resume_skills = extract_skills_llama(resume_text)
resume_qualifications = extract_qualifications(resume_text)
resume_experience, _ = extract_experience(resume_text)
total_experience = sum(resume_experience) # Assuming this returns a list of experiences
# Extract required skills, qualifications, and experience from the job description
job_description_skills = process_job_description(job_description_text)
job_description_qualifications = extract_qualifications(job_description_text)
job_description_experience, _ = extract_experience(job_description_text)
required_experience = sum(job_description_experience) # Assuming total years required
# Calculate similarity scores
skills_similarity = len(set(resume_skills).intersection(set(job_description_skills))) / len(job_description_skills) * 100 if job_description_skills else 0
qualifications_similarity = len(set(resume_qualifications).intersection(set(job_description_qualifications))) / len(job_description_qualifications) * 100 if job_description_qualifications else 0
experience_similarity = 1.0 if total_experience >= required_experience else 0.0
# Fit assessment logic
fit_score = 0
if total_experience >= required_experience:
fit_score += 1
if skills_similarity > 50: # Define a threshold for skills match
fit_score += 1
if qualifications_similarity > 50: # Define a threshold for qualifications match
fit_score += 1
# Determine fit
if fit_score == 3:
fit_assessment = "Strong fit"
elif fit_score == 2:
fit_assessment = "Moderate fit"
else:
fit_assessment = "Not a fit"
# Prepare output messages for tab display
summary_message = (
f"### Summary of Analysis\n"
f"- **Skills Similarity**: {skills_similarity:.2f}%\n"
f"- **Qualifications Similarity**: {qualifications_similarity:.2f}%\n"
f"- **Experience Similarity**: {experience_similarity * 100:.2f}%\n"
f"- **Candidate Experience**: {total_experience} years\n"
f"- **Fit Assessment**: {fit_assessment}\n"
)
skills_message = (
f"### Skills Overview\n"
f"- **Resume Skills:**\n" + "\n".join(f" - {skill}" for skill in resume_skills) + "\n"
f"- **Job Description Skills:**\n" + "\n".join(f" - {skill}" for skill in job_description_skills) + "\n"
)
qualifications_message = (
f"### Qualifications Overview\n"
f"- **Resume Qualifications:** " + ", ".join(resume_qualifications) + "\n" +
f"- **Job Description Qualifications:** " + ", ".join(job_description_qualifications) + "\n"
)
experience_message = (
f"### Experience Overview\n"
f"- **Total Experience:** {total_experience} years\n"
f"- **Required Experience:** {required_experience} years\n"
)
return summary_message, skills_message, qualifications_message, experience_message
# --- Gradio Interface --- #
def run_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("## Resume and Job Description Analyzer")
resume_file = gr.File(label="Upload Resume")
job_description_file = gr.File(label="Upload Job Description")
# Create placeholders for output messages
summary_output = gr.Textbox(label="Summary of Analysis", interactive=False, lines=10)
skills_output = gr.Textbox(label="Skills Overview", interactive=False, lines=10)
qualifications_output = gr.Textbox(label="Qualifications Overview", interactive=False, lines=10)
experience_output = gr.Textbox(label="Experience Overview", interactive=False, lines=10)
# Create tabs for output sections
with gr.Tab("Analysis Summary"):
gr.Markdown("### Summary of Analysis")
summary_output # This automatically renders the output box
with gr.Tab("Skills Overview"):
gr.Markdown("### Skills Overview")
skills_output # This automatically renders the output box
with gr.Tab("Qualifications Overview"):
gr.Markdown("### Qualifications Overview")
qualifications_output # This automatically renders the output box
with gr.Tab("Experience Overview"):
gr.Markdown("### Experience Overview")
experience_output # This automatically renders the output box
analyze_button = gr.Button("Analyze")
# Button action
analyze_button.click(analyze, inputs=[resume_file, job_description_file], outputs=[summary_output, skills_output, qualifications_output, experience_output])
demo.launch()
def analyze(resume, job_desc):
# Always ensure the correct number of return values
summary, skills, qualifications, experience = analyze_resume(resume, job_desc)
return summary, skills, qualifications, experience
if __name__ == "__main__":
run_gradio_interface()