DrishtiSharma's picture
Update app.py
baefa5b verified
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
class DocumentRAG:
def __init__(self):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
self.init_time = datetime.now(pytz.UTC)
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
# Persistent directory for Chroma to avoid tenant-related errors
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def process_documents(self, uploaded_files, embedding_choice):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(
delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = OpenAIEmbeddings(api_key=self.api_key)
if embedding_choice == "OpenAI Embeddings":
embeddings = OpenAIEmbeddings(api_key=self.api_key)
else:
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a clinically relevant summary in the specified language."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": f"""
You are a multilingual clinical AI assistant. Summarize the following medical document (e.g., discharge summary, progress note, or diagnostic report) in **{language}**, preserving all **critical medical information**.
Please ensure the summary includes:
- Patient history (if available)
- Current diagnosis and relevant symptoms
- Medications and treatments administered
- Investigations and results (if mentioned)
- Any follow-up instructions or discharge plans
Use clear, concise language suitable for healthcare professionals. Maintain clinical accuracy and do not hallucinate. Aim for a structured summary under 300 words.
"""
},
{
"role": "user",
"content": text[4000]
}
],
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = (
f"Instruction: Respond in {language}. Be professional and concise, "
f"keeping the response under 300 words. If you cannot provide an answer, say: "
f'"I am not sure about this question. Please try asking something else."'
)
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
# Initialize RAG system in session state
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG()
with st.sidebar:
st.markdown("## About:")
st.markdown(
"""
This prototype is part of a research project – **Multilingual Clinical Text Understanding**.
**Interim Goals:**
1. Summarize clinical notes in local languages
2. Enable question answering over clinical documents using RAG
3. Evaluate performance in under-resourced languages like Bangla,
**Tasks Covered:**
1. Summarization
2. Question Answering
"""
)
st.markdown("## Steps:")
st.markdown(
"""
1. Upload documents
2. Generate summary
3. Ask Questions
4. Log User Interactions
"""
)
st.markdown("## Contributors:")
st.markdown("Azmine Toushik Wasi, Drishti, Prahitha, Anik, Ashay, AbdurRahman, Iqramul")
st.markdown("### References:")
st.markdown("[1. RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW)")
# Streamlit UI
st.title("Multilingual Clinical Summarization & QA with RAG")
st.image("./cover_image.png", use_container_width=True)
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
embedding_model_choice = st.radio(
"Choose Embedding Model:",
["OpenAI Embeddings", "PubMedBERT Embeddings"],
horizontal=True,
key="embedding_model_choice"
)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files, embedding_model_choice)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summary
st.subheader("Step 2: Generate Summary")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Bangla", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
"",
summary_language_options,
horizontal=True,
key="summary_language"
)
if st.button("Generate Summary"):
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
with st.spinner("Generating summary, please wait..."):
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
if summary:
st.session_state.rag_system.document_summary = summary
st.text_area("Document Summary", summary, height=200)
st.success("Summary generated successfully!")
else:
st.error("Failed to generate summary.")
else:
st.info("Please process documents first to generate summary.")
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Bangla", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")