File size: 2,412 Bytes
83eb24a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer
from unsloth import FastLanguageModel

# Model Setup
max_seq_length = 2048
load_in_4bit = True
name = "large-traversaal/Phi-4-Hindi"
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=name,
    max_seq_length=max_seq_length,
    load_in_4bit=load_in_4bit,
)

model = FastLanguageModel.get_peft_model(
    model,
    r=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    lora_alpha=16,
    lora_dropout=0,
    bias="none",
    use_gradient_checkpointing="unsloth",
    random_state=3407,
    use_rslora=False,
    loftq_config=None,
)
FastLanguageModel.for_inference(model)

def generate_response(task, input_text, temperature, top_p, max_tokens):
    prompt = f"### INPUT : {input_text} RESPONSE : "
    message = [{"role": "user", "content": prompt}]
    inputs = tokenizer.apply_chat_template(message, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
    
    outputs = model.generate(
        input_ids=inputs,
        max_new_tokens=max_tokens,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
        pad_token_id=tokenizer.eos_token_id,
    )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    processed_response = response.split("### RESPONSE :assistant")[-1].strip()
    return processed_response

# Gradio Interface
def gradio_ui():
    with gr.Blocks() as demo:
        gr.Markdown("## Test Space: Chat with Phi-4-Hindi")
        with gr.Row():
            task = gr.Dropdown([
                "Long Response", "Short Response", "NLI", "Translation", "MCQ", "Cross-Lingual"
            ], label="Select Task")
            input_text = gr.Textbox(label="Input Text")
        
        with gr.Row():
            temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
            top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P")
            max_tokens = gr.Slider(50, 800, value=200, step=50, label="Max Tokens")
        
        output_text = gr.Textbox(label="Generated Response")
        btn = gr.Button("Generate")
        btn.click(generate_response, inputs=[task, input_text, temperature, top_p, max_tokens], outputs=output_text)
    
    return demo

# Launch Gradio App
demo = gradio_ui()
demo.launch()