Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers import AutoTokenizer
|
5 |
from unsloth import FastLanguageModel
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Model Setup
|
8 |
max_seq_length = 2048
|
@@ -28,14 +38,45 @@ model = FastLanguageModel.get_peft_model(
|
|
28 |
)
|
29 |
FastLanguageModel.for_inference(model)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
outputs = model.generate(
|
37 |
input_ids=inputs,
|
38 |
-
max_new_tokens=
|
39 |
use_cache=True,
|
40 |
temperature=temperature,
|
41 |
top_p=top_p,
|
@@ -43,30 +84,50 @@ def generate_response(task, input_text, temperature, top_p, max_tokens):
|
|
43 |
)
|
44 |
|
45 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
-
processed_response = response.split("### RESPONSE :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
return processed_response
|
48 |
|
49 |
-
# Gradio
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
with gr.Row():
|
60 |
-
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
|
61 |
-
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P")
|
62 |
-
max_tokens = gr.Slider(50, 800, value=200, step=50, label="Max Tokens")
|
63 |
-
|
64 |
-
output_text = gr.Textbox(label="Generated Response")
|
65 |
-
btn = gr.Button("Generate")
|
66 |
-
btn.click(generate_response, inputs=[task, input_text, temperature, top_p, max_tokens], outputs=output_text)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
# Launch Gradio App
|
71 |
-
demo = gradio_ui()
|
72 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import time
|
4 |
+
import json
|
5 |
+
import uuid
|
6 |
+
import os
|
7 |
+
import pytz
|
8 |
+
from datetime import datetime
|
9 |
from transformers import AutoTokenizer
|
10 |
from unsloth import FastLanguageModel
|
11 |
+
from pathlib import Path
|
12 |
+
from huggingface_hub import CommitScheduler
|
13 |
+
|
14 |
+
# Load HF token from the environment
|
15 |
+
token = os.environ["HF_TOKEN"]
|
16 |
|
17 |
# Model Setup
|
18 |
max_seq_length = 2048
|
|
|
38 |
)
|
39 |
FastLanguageModel.for_inference(model)
|
40 |
|
41 |
+
# Task-Specific Prompt Mapping
|
42 |
+
option_mapping = {
|
43 |
+
"translation": "### TRANSLATION ###",
|
44 |
+
"mcq": "### MCQ ###",
|
45 |
+
"nli": "### NLI ###",
|
46 |
+
"summarization": "### SUMMARIZATION ###",
|
47 |
+
"long response": "### LONG RESPONSE ###",
|
48 |
+
"direct response": "### DIRECT RESPONSE ###",
|
49 |
+
"paraphrase": "### PARAPHRASE ###",
|
50 |
+
"code": "### CODE ###",
|
51 |
+
}
|
52 |
+
|
53 |
+
# Set up logging folder and CommitScheduler
|
54 |
+
log_folder = Path("logs")
|
55 |
+
log_folder.mkdir(parents=True, exist_ok=True)
|
56 |
+
log_file = log_folder / f"chat_log_{uuid.uuid4()}.json"
|
57 |
+
|
58 |
+
scheduler = CommitScheduler(
|
59 |
+
repo_id="DrishtiSharma/phi-4-unsloth-logs",
|
60 |
+
repo_type="dataset",
|
61 |
+
folder_path=log_folder,
|
62 |
+
path_in_repo="data",
|
63 |
+
every=10,
|
64 |
+
token=token
|
65 |
+
)
|
66 |
+
|
67 |
+
# Fixed timezone
|
68 |
+
timezone = pytz.timezone("UTC")
|
69 |
+
|
70 |
+
def generate_response(message, temperature, max_new_tokens, top_p, task):
|
71 |
+
append_text = option_mapping.get(task, "")
|
72 |
+
prompt = f"### INPUT : {message} {append_text} RESPONSE : "
|
73 |
+
print(f"Prompt: {prompt}")
|
74 |
+
start_time = time.time()
|
75 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
76 |
|
77 |
outputs = model.generate(
|
78 |
input_ids=inputs,
|
79 |
+
max_new_tokens=max_new_tokens,
|
80 |
use_cache=True,
|
81 |
temperature=temperature,
|
82 |
top_p=top_p,
|
|
|
84 |
)
|
85 |
|
86 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
87 |
+
processed_response = response.split("### RESPONSE :")[-1].strip()
|
88 |
+
end_time = time.time()
|
89 |
+
|
90 |
+
response_time = round(end_time - start_time, 2)
|
91 |
+
timestamp = datetime.now(timezone).strftime("%Y-%m-%d %H:%M:%S %Z")
|
92 |
+
log_data = {
|
93 |
+
"timestamp": timestamp,
|
94 |
+
"input": message,
|
95 |
+
"output": processed_response,
|
96 |
+
"response_time": response_time,
|
97 |
+
"temperature": temperature,
|
98 |
+
"max_tokens": max_new_tokens,
|
99 |
+
"top_p": top_p
|
100 |
+
}
|
101 |
+
|
102 |
+
with scheduler.lock:
|
103 |
+
with log_file.open("a") as f:
|
104 |
+
f.write(json.dumps(log_data) + "\n")
|
105 |
+
|
106 |
return processed_response
|
107 |
|
108 |
+
# Gradio UI
|
109 |
+
with gr.Blocks() as demo:
|
110 |
+
gr.Markdown("## Chat with Phi-4-Hindi")
|
111 |
+
|
112 |
+
task_dropdown = gr.Dropdown(
|
113 |
+
choices=list(option_mapping.keys()),
|
114 |
+
value="long response",
|
115 |
+
label="Select Task"
|
116 |
+
)
|
117 |
+
message_input = gr.Textbox(label="Enter your message")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
with gr.Row():
|
120 |
+
temperature_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
|
121 |
+
top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.1, label="Top P")
|
122 |
+
max_tokens_slider = gr.Slider(50, 800, value=200, step=50, label="Max Tokens")
|
123 |
+
|
124 |
+
output_box = gr.Textbox(label="Generated Response")
|
125 |
+
generate_btn = gr.Button("Generate")
|
126 |
+
|
127 |
+
generate_btn.click(
|
128 |
+
generate_response,
|
129 |
+
inputs=[message_input, temperature_slider, max_tokens_slider, top_p_slider, task_dropdown],
|
130 |
+
outputs=output_box
|
131 |
+
)
|
132 |
|
|
|
|
|
133 |
demo.launch()
|