Merge remote-tracking branch 'origin' into feature/talk_to_data
Browse files- app.py +1 -1
- climateqa/chat.py +2 -2
- climateqa/constants.py +36 -1
- climateqa/logging.py +172 -83
app.py
CHANGED
@@ -81,7 +81,7 @@ llm = get_llm(provider="openai", max_tokens=1024, temperature=0.0)
|
|
81 |
if os.environ["GRADIO_ENV"] == "local":
|
82 |
reranker = get_reranker("nano")
|
83 |
else:
|
84 |
-
reranker = get_reranker("
|
85 |
|
86 |
agent = make_graph_agent(
|
87 |
llm=llm,
|
|
|
81 |
if os.environ["GRADIO_ENV"] == "local":
|
82 |
reranker = get_reranker("nano")
|
83 |
else:
|
84 |
+
reranker = get_reranker("nano")
|
85 |
|
86 |
agent = make_graph_agent(
|
87 |
llm=llm,
|
climateqa/chat.py
CHANGED
@@ -14,7 +14,7 @@ from .handle_stream_events import (
|
|
14 |
handle_retrieved_owid_graphs,
|
15 |
)
|
16 |
from .logging import (
|
17 |
-
|
18 |
)
|
19 |
|
20 |
# Chat functions
|
@@ -189,6 +189,6 @@ async def chat_stream(
|
|
189 |
raise gr.Error(str(e))
|
190 |
|
191 |
# Call the function to log interaction
|
192 |
-
|
193 |
|
194 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
|
|
14 |
handle_retrieved_owid_graphs,
|
15 |
)
|
16 |
from .logging import (
|
17 |
+
log_interaction
|
18 |
)
|
19 |
|
20 |
# Chat functions
|
|
|
189 |
raise gr.Error(str(e))
|
190 |
|
191 |
# Call the function to log interaction
|
192 |
+
log_interaction(history, output_query, sources, docs, share_client, user_id)
|
193 |
|
194 |
yield history, docs_html, output_query, output_language, related_contents, graphs_html, follow_up_examples#, vanna_data
|
climateqa/constants.py
CHANGED
@@ -65,4 +65,39 @@ OWID_CATEGORIES = ['Access to Energy', 'Agricultural Production',
|
|
65 |
'Oil Spills', 'Outdoor Air Pollution', 'Ozone Layer', 'Pandemics',
|
66 |
'Pesticides', 'Plastic Pollution', 'Renewable Energy', 'Soil',
|
67 |
'Transport', 'Urbanization', 'Waste Management', 'Water Pollution',
|
68 |
-
'Water Use & Stress', 'Wildfires']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
'Oil Spills', 'Outdoor Air Pollution', 'Ozone Layer', 'Pandemics',
|
66 |
'Pesticides', 'Plastic Pollution', 'Renewable Energy', 'Soil',
|
67 |
'Transport', 'Urbanization', 'Waste Management', 'Water Pollution',
|
68 |
+
'Water Use & Stress', 'Wildfires']
|
69 |
+
|
70 |
+
|
71 |
+
DOCUMENT_METADATA_DEFAULT_VALUES = {
|
72 |
+
"chunk_type": "",
|
73 |
+
"document_id": "",
|
74 |
+
"document_number": 0.0,
|
75 |
+
"element_id": "",
|
76 |
+
"figure_code": "",
|
77 |
+
"file_size": "",
|
78 |
+
"image_path": "",
|
79 |
+
"n_pages": 0.0,
|
80 |
+
"name": "",
|
81 |
+
"num_characters": 0.0,
|
82 |
+
"num_tokens": 0.0,
|
83 |
+
"num_tokens_approx": 0.0,
|
84 |
+
"num_words": 0.0,
|
85 |
+
"page_number": 0,
|
86 |
+
"release_date": 0.0,
|
87 |
+
"report_type": "",
|
88 |
+
"section_header": "",
|
89 |
+
"short_name": "",
|
90 |
+
"source": "",
|
91 |
+
"toc_level0": "",
|
92 |
+
"toc_level1": "",
|
93 |
+
"toc_level2": "",
|
94 |
+
"toc_level3": "",
|
95 |
+
"url": "",
|
96 |
+
"similarity_score": 0.0,
|
97 |
+
"content": "",
|
98 |
+
"reranking_score": 0.0,
|
99 |
+
"query_used_for_retrieval": "",
|
100 |
+
"sources_used": [""],
|
101 |
+
"question_used": "",
|
102 |
+
"index_used": ""
|
103 |
+
}
|
climateqa/logging.py
CHANGED
@@ -4,111 +4,157 @@ import json
|
|
4 |
from huggingface_hub import HfApi
|
5 |
import gradio as gr
|
6 |
import csv
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def serialize_docs(docs:list)->list:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
new_docs = []
|
10 |
for doc in docs:
|
11 |
-
|
12 |
-
new_doc
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
new_docs.append(new_doc)
|
|
|
|
|
|
|
15 |
return new_docs
|
16 |
|
17 |
## AZURE LOGGING - DEPRECATED
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
|
94 |
## HUGGING FACE LOGGING
|
95 |
|
96 |
-
def log_on_huggingface(log_filename, logs):
|
97 |
"""Log data to Hugging Face dataset repository.
|
98 |
|
99 |
Args:
|
100 |
log_filename (str): Name of the file to store logs
|
101 |
logs (dict): Log data to store
|
|
|
102 |
"""
|
103 |
try:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# Initialize HfApi
|
114 |
api = HfApi(token=hf_token)
|
@@ -158,10 +204,13 @@ def log_interaction_to_huggingface(history, output_query, sources, docs, share_c
|
|
158 |
"time": timestamp,
|
159 |
}
|
160 |
# Log to Hugging Face
|
161 |
-
log_on_huggingface(f"chat/{timestamp}.json", logs)
|
|
|
|
|
|
|
162 |
except Exception as e:
|
163 |
print(f"Error logging to Hugging Face: {e}")
|
164 |
-
error_msg = f"ClimateQ&A Error: {str(e)[:100]}
|
165 |
raise gr.Error(error_msg)
|
166 |
|
167 |
def log_drias_interaction_to_huggingface(query, sql_query, user_id):
|
@@ -182,7 +231,7 @@ def log_drias_interaction_to_huggingface(query, sql_query, user_id):
|
|
182 |
"sql_query": sql_query,
|
183 |
"time": timestamp,
|
184 |
}
|
185 |
-
log_on_huggingface(f"drias/drias_{timestamp}.json", logs)
|
186 |
print(f"Logged Drias interaction to Hugging Face: {logs}")
|
187 |
else:
|
188 |
print("share_client or user_id is None, or GRADIO_ENV is local")
|
@@ -191,4 +240,44 @@ def log_drias_interaction_to_huggingface(query, sql_query, user_id):
|
|
191 |
error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
192 |
raise gr.Error(error_msg)
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
|
|
4 |
from huggingface_hub import HfApi
|
5 |
import gradio as gr
|
6 |
import csv
|
7 |
+
import pandas as pd
|
8 |
+
import io
|
9 |
+
from typing import TypedDict, List
|
10 |
+
from climateqa.constants import DOCUMENT_METADATA_DEFAULT_VALUES
|
11 |
+
from langchain_core.documents import Document
|
12 |
|
13 |
+
def serialize_docs(docs:list[Document])->list:
|
14 |
+
"""Convert document objects to a simplified format compatible with Hugging Face datasets.
|
15 |
+
|
16 |
+
This function processes document objects by extracting their page content and metadata,
|
17 |
+
normalizing the metadata structure to ensure consistency. It applies default values
|
18 |
+
from DOCUMENT_METADATA_DEFAULT_VALUES for any missing metadata fields.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
docs (list): List of document objects, each with page_content and metadata attributes
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
list: List of dictionaries with standardized "page_content" and "metadata" fields
|
25 |
+
"""
|
26 |
new_docs = []
|
27 |
for doc in docs:
|
28 |
+
# Make sure we have a clean doc format
|
29 |
+
new_doc = {
|
30 |
+
"page_content": doc.page_content,
|
31 |
+
"metadata": {}
|
32 |
+
}
|
33 |
+
|
34 |
+
# Ensure all metadata fields exist with defaults if missing
|
35 |
+
for field, default_value in DOCUMENT_METADATA_DEFAULT_VALUES.items():
|
36 |
+
new_value = doc.metadata.get(field, default_value)
|
37 |
+
try:
|
38 |
+
new_doc["metadata"][field] = type(default_value)(new_value)
|
39 |
+
except:
|
40 |
+
new_doc["metadata"][field] = default_value
|
41 |
+
|
42 |
new_docs.append(new_doc)
|
43 |
+
|
44 |
+
if new_docs == []:
|
45 |
+
new_docs = [{"page_content": "No documents found", "metadata": DOCUMENT_METADATA_DEFAULT_VALUES}]
|
46 |
return new_docs
|
47 |
|
48 |
## AZURE LOGGING - DEPRECATED
|
49 |
|
50 |
+
def log_on_azure(file, logs, share_client):
|
51 |
+
"""Log data to Azure Blob Storage.
|
52 |
|
53 |
+
Args:
|
54 |
+
file (str): Name of the file to store logs
|
55 |
+
logs (dict): Log data to store
|
56 |
+
share_client: Azure share client instance
|
57 |
+
"""
|
58 |
+
logs = json.dumps(logs)
|
59 |
+
file_client = share_client.get_file_client(file)
|
60 |
+
file_client.upload_file(logs)
|
61 |
|
62 |
|
63 |
+
def log_interaction_to_azure(history, output_query, sources, docs, share_client, user_id):
|
64 |
+
"""Log chat interaction to Azure and Hugging Face.
|
65 |
|
66 |
+
Args:
|
67 |
+
history (list): Chat message history
|
68 |
+
output_query (str): Processed query
|
69 |
+
sources (list): Knowledge base sources used
|
70 |
+
docs (list): Retrieved documents
|
71 |
+
share_client: Azure share client instance
|
72 |
+
user_id (str): User identifier
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
# Log interaction to Azure if not in local environment
|
76 |
+
if os.getenv("GRADIO_ENV") != "local":
|
77 |
+
timestamp = str(datetime.now().timestamp())
|
78 |
+
prompt = history[1]["content"]
|
79 |
+
logs = {
|
80 |
+
"user_id": str(user_id),
|
81 |
+
"prompt": prompt,
|
82 |
+
"query": prompt,
|
83 |
+
"question": output_query,
|
84 |
+
"sources": sources,
|
85 |
+
"docs": serialize_docs(docs),
|
86 |
+
"answer": history[-1].content,
|
87 |
+
"time": timestamp,
|
88 |
+
}
|
89 |
+
# Log to Azure
|
90 |
+
log_on_azure(f"{timestamp}.json", logs, share_client)
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Error logging on Azure Blob Storage: {e}")
|
93 |
+
error_msg = f"ClimateQ&A Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
94 |
+
raise gr.Error(error_msg)
|
95 |
|
96 |
+
def log_drias_interaction_to_azure(query, sql_query, data, share_client, user_id):
|
97 |
+
"""Log Drias data interaction to Azure and Hugging Face.
|
98 |
|
99 |
+
Args:
|
100 |
+
query (str): User query
|
101 |
+
sql_query (str): SQL query used
|
102 |
+
data: Retrieved data
|
103 |
+
share_client: Azure share client instance
|
104 |
+
user_id (str): User identifier
|
105 |
+
"""
|
106 |
+
try:
|
107 |
+
# Log interaction to Azure if not in local environment
|
108 |
+
if os.getenv("GRADIO_ENV") != "local":
|
109 |
+
timestamp = str(datetime.now().timestamp())
|
110 |
+
logs = {
|
111 |
+
"user_id": str(user_id),
|
112 |
+
"query": query,
|
113 |
+
"sql_query": sql_query,
|
114 |
+
"time": timestamp,
|
115 |
+
}
|
116 |
+
log_on_azure(f"drias_{timestamp}.json", logs, share_client)
|
117 |
+
print(f"Logged Drias interaction to Azure Blob Storage: {logs}")
|
118 |
+
else:
|
119 |
+
print("share_client or user_id is None, or GRADIO_ENV is local")
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Error logging Drias interaction on Azure Blob Storage: {e}")
|
122 |
+
error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
123 |
+
raise gr.Error(error_msg)
|
124 |
|
125 |
## HUGGING FACE LOGGING
|
126 |
|
127 |
+
def log_on_huggingface(log_filename, logs, log_type="chat"):
|
128 |
"""Log data to Hugging Face dataset repository.
|
129 |
|
130 |
Args:
|
131 |
log_filename (str): Name of the file to store logs
|
132 |
logs (dict): Log data to store
|
133 |
+
log_type (str): Type of log to store
|
134 |
"""
|
135 |
try:
|
136 |
+
if log_type =="chat":
|
137 |
+
# Get Hugging Face token from environment
|
138 |
+
hf_token = os.getenv("HF_LOGS_TOKEN")
|
139 |
+
if not hf_token:
|
140 |
+
print("HF_LOGS_TOKEN not found in environment variables")
|
141 |
+
return
|
142 |
|
143 |
+
# Get repository name from environment or use default
|
144 |
+
repo_id = os.getenv("HF_DATASET_REPO", "Ekimetrics/climateqa_logs")
|
145 |
+
|
146 |
+
elif log_type =="drias":
|
147 |
+
# Get Hugging Face token from environment
|
148 |
+
hf_token = os.getenv("HF_LOGS_DRIAS_TOKEN")
|
149 |
+
if not hf_token:
|
150 |
+
print("HF_LOGS_DRIAS_TOKEN not found in environment variables")
|
151 |
+
return
|
152 |
+
|
153 |
+
# Get repository name from environment or use default
|
154 |
+
repo_id = os.getenv("HF_DATASET_REPO_DRIAS", "Ekimetrics/climateqa_logs_talk_to_data")
|
155 |
+
|
156 |
+
else:
|
157 |
+
raise ValueError(f"Invalid log type: {log_type}")
|
158 |
|
159 |
# Initialize HfApi
|
160 |
api = HfApi(token=hf_token)
|
|
|
204 |
"time": timestamp,
|
205 |
}
|
206 |
# Log to Hugging Face
|
207 |
+
log_on_huggingface(f"chat/{timestamp}.json", logs, log_type="chat")
|
208 |
+
print(f"Logged interaction to Hugging Face")
|
209 |
+
else:
|
210 |
+
print("Did not log to Hugging Face because GRADIO_ENV is local")
|
211 |
except Exception as e:
|
212 |
print(f"Error logging to Hugging Face: {e}")
|
213 |
+
error_msg = f"ClimateQ&A Error: {str(e)[:100]})"
|
214 |
raise gr.Error(error_msg)
|
215 |
|
216 |
def log_drias_interaction_to_huggingface(query, sql_query, user_id):
|
|
|
231 |
"sql_query": sql_query,
|
232 |
"time": timestamp,
|
233 |
}
|
234 |
+
log_on_huggingface(f"drias/drias_{timestamp}.json", logs, log_type="drias")
|
235 |
print(f"Logged Drias interaction to Hugging Face: {logs}")
|
236 |
else:
|
237 |
print("share_client or user_id is None, or GRADIO_ENV is local")
|
|
|
240 |
error_msg = f"Drias Error: {str(e)[:100]} - The error has been noted, try another question and if the error remains, you can contact us :)"
|
241 |
raise gr.Error(error_msg)
|
242 |
|
243 |
+
def log_interaction(history, output_query, sources, docs, share_client, user_id):
|
244 |
+
"""Log chat interaction to Hugging Face, and fall back to Azure if that fails.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
history (list): Chat message history
|
248 |
+
output_query (str): Processed query
|
249 |
+
sources (list): Knowledge base sources used
|
250 |
+
docs (list): Retrieved documents
|
251 |
+
share_client: Azure share client instance
|
252 |
+
user_id (str): User identifier
|
253 |
+
"""
|
254 |
+
try:
|
255 |
+
# First try to log to Hugging Face
|
256 |
+
log_interaction_to_huggingface(history, output_query, sources, docs, share_client, user_id)
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Failed to log to Hugging Face, falling back to Azure: {e}")
|
259 |
+
try:
|
260 |
+
# Fall back to Azure logging
|
261 |
+
if os.getenv("GRADIO_ENV") != "local":
|
262 |
+
timestamp = str(datetime.now().timestamp())
|
263 |
+
prompt = history[1]["content"]
|
264 |
+
logs = {
|
265 |
+
"user_id": str(user_id),
|
266 |
+
"prompt": prompt,
|
267 |
+
"query": prompt,
|
268 |
+
"question": output_query,
|
269 |
+
"sources": sources,
|
270 |
+
"docs": serialize_docs(docs),
|
271 |
+
"answer": history[-1].content,
|
272 |
+
"time": timestamp,
|
273 |
+
}
|
274 |
+
# Log to Azure
|
275 |
+
log_on_azure(f"{timestamp}.json", logs, share_client)
|
276 |
+
print("Successfully logged to Azure as fallback")
|
277 |
+
except Exception as azure_error:
|
278 |
+
print(f"Error in Azure fallback logging: {azure_error}")
|
279 |
+
error_msg = f"ClimateQ&A Logging Error: {str(azure_error)[:100]})"
|
280 |
+
# Don't raise error to avoid disrupting user experience
|
281 |
+
print(error_msg)
|
282 |
+
|
283 |
|