debug / app.py
FarahMohsenSamy1's picture
Update app.py
64a928c verified
from fastapi import FastAPI, HTTPException, Form, Request
from fastapi.responses import JSONResponse
import torch
import pandas as pd
import logging
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import degree
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn import preprocessing as pp
import json
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
import os
from datasets import load_dataset
from scheduler import get_latest_model
cache_base = "/app/cache"
os.makedirs(f"{cache_base}/huggingface", exist_ok=True)
os.makedirs(f"{cache_base}/transformers", exist_ok=True)
os.makedirs(f"{cache_base}/datasets", exist_ok=True)
# Set all possible Hugging Face cache environment variables
os.environ['HF_HOME'] = f"{cache_base}/huggingface"
os.environ['TRANSFORMERS_CACHE'] = f"{cache_base}/transformers"
os.environ['HF_DATASETS_CACHE'] = f"{cache_base}/datasets"
os.environ['HUGGINGFACE_HUB_CACHE'] = f"{cache_base}/huggingface"
os.environ['HF_HUB_CACHE'] = f"{cache_base}/huggingface"
# Initialize FastAPI and logging
app = FastAPI()
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
product_gender_mapping = {
"Dental Care Kits": "Unisex",
"Lamb Meat": "Unisex",
"Whole Chicken": "Unisex",
"Hyaluronic Acid": "Female",
"Whitening Toothpaste": "Unisex",
"Pure Sesame Oil": "Unisex",
"Modern Literature": "Unisex",
"Organic Sesame Oil": "Unisex",
"Premium Olive Oil": "Unisex",
"Historical Fiction": "Unisex",
"Home Decorations": "Unisex",
"Minced Meat": "Unisex",
"Fresh Milk": "Unisex",
"Skin Health Products": "Female",
"Kitchen Towels": "Unisex",
"Mineral Water": "Unisex",
"Frozen Chicken Drumsticks": "Unisex",
"Premium Bedding": "Unisex",
"Pepsi Soft Drink": "Unisex",
"Organic Milk": "Unisex",
"Refined Olive Oil": "Unisex",
"Tomato Paste": "Unisex",
"Burger Sauce": "Unisex",
"Xbox Series X": "Male",
"Smart LED TV": "Unisex",
"MacBook Pro 16-inch": "Unisex",
"iPhone15": "Unisex",
"Innovative Home Appliances": "Unisex",
"Windbreaker Jacket": "Male",
"Natural Shampoo": "Female",
"Classic Fiction": "Unisex",
"Eyeliner": "Female",
"Creamy Mayonnaise": "Unisex",
"Coca-Cola Soft Drink": "Unisex",
"Training Shorts": "Male",
"Pavilion Laptop": "Unisex",
"Hyaluronic Acid": "Female",
"Inspiron Laptop": "Unisex",
"Snack Bars": "Unisex",
"Tomato Ketchup": "Unisex",
"Blender": "Unisex",
"Energy-Efficient Air Conditioner": "Unisex",
"Conditionar": "Female",
"Advanced Washing Machine": "Unisex",
"Hand Cream": "Female",
"Hair Cream": "Female",
"Mascara": "Female",
"Bluetooth Audio System": "Unisex",
"Sports Shoes": "Unisex",
"PlayStation Console": "Male",
"Chili Sauce": "Unisex",
"Smart Refrigerator": "Unisex",
"Bravia Television": "Unisex",
"Formal Shirt": "Male",
"ThinkPad Laptop": "Unisex",
"Blended Sunflower Oil": "Unisex",
"iPhone14": "Unisex",
"Split Air Conditioner": "Unisex",
"MacBook Pro 13-inch": "Unisex",
"Athletic T-shirt": "Male",
"iPad": "Unisex",
"Galaxy Tablet": "Unisex",
"Popular Non-Fiction": "Unisex",
"High-Capacity Washing Machine": "Unisex",
"iPhone13": "Unisex",
"Hair Repair Shampoo": "Female",
"Microwave Oven": "Unisex",
"Eyeliner": "Female",
"Consumer Electronics": "Unisex",
"Durable Home Appliances": "Unisex",
"Multi-Function Home Appliances": "Unisex",
"Hydrating Skincare": "Female",
"MacBook Air": "Unisex",
"Fruit Juice": "Unisex",
"Healthy Juice": "Unisex",
"Evening Dress": "Female",
"Body Care Essentials": "Female",
"Mascara": "Female",
"Frozen Chicken": "Unisex",
"Hair Serum": "Female",
"Ground Meat": "Unisex",
"Eyeliner": "Female",
"Workout T-shirt": "Male",
"Living Room Furniture": "Unisex",
"Milk Chocolate": "Unisex",
"Shampoo": "Female",
"Frozen Chicken Wings": "Unisex",
"Beef Cuts": "Unisex",
"Instant Coffee": "Unisex",
"Home Decorations": "Unisex",
"Power Tools": "Male",
"Coffee Maker": "Unisex",
"Modular Furniture": "Unisex",
"Smart TV": "Unisex",
"Sunflower Cooking Oil": "Unisex",
"Running Shoes": "Unisex",
"Gentle Body Care": "Female",
"Mascara": "Female",
"Bathroom Accessories": "Unisex",
"Hair Cream": "Female",
"Comfort Bedding": "Unisex",
"Thriller Novel": "Unisex",
"Track Jacket": "Male",
"MacBook Pro 14-inch": "Unisex",
"LED Lighting": "Unisex",
"Galaxy Smartphone": "Unisex",
"Contemporary Literature": "Unisex",
"Bathroom Essentials": "Unisex",
"Natural Juice": "Unisex",
"Smart Watch": "Unisex",
"Conditionar": "Female",
"Shampoo": "Female",
"Casual Jacket": "Male",
"iPhone16": "Unisex",
"iPhone11": "Unisex",
}
# Set device to GPU if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# # Load and preprocess data
# df_all = pd.read_csv("transactions.csv")
# Set a writable cache directory
os.environ["HF_HOME"] = "/tmp/hf_cache" # Use /tmp, which is writable in Spaces
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
user_encoder = pp.LabelEncoder()
item_encoder = pp.LabelEncoder()
# Load dataset with custom cache directory
dataset_all = load_dataset("FarahMohsenSamy1/Transactions", cache_dir=os.environ["HF_HOME"])
df = dataset_all['train'].to_pandas() # Convert to pandas DataFrame
df["user_id_idx"] = user_encoder.fit_transform(df["Customer_ID"])
user_encoder = pp.LabelEncoder()
item_encoder = pp.LabelEncoder()
df["user_id_idx"] = user_encoder.fit_transform(df["Customer_ID"])
df["item_id_idx"] = item_encoder.fit_transform(df["Item_ID"])
# df['Timestamp'] = pd.to_datetime(df['Timestamp'])
# df['Timestamp_numeric'] = df['Timestamp'].astype('int64') // 10**9 # Seconds since epoch
# df["scaled_timestamp"] = MinMaxScaler().fit_transform(df[["Timestamp_numeric"]])
latent_dim = 64
n_layers = 3
n_users = df["user_id_idx"].nunique()
n_items = df["item_id_idx"].nunique()
COLLAB_WEIGHT = 0.5
CONTENT_WEIGHT = 0.5
# Label encoding and scaling
user_label_encoder = pp.LabelEncoder()
item_label_encoder = pp.LabelEncoder()
date_scaler = MinMaxScaler()
def preprocess_data(df, le_user=None, le_item=None, scaler=None):
if le_user is not None:
df["user_id_idx"] = le_user.fit_transform(df["Customer_ID"].values)
if le_item is not None:
df["item_id_idx"] = le_item.fit_transform(df["Item_ID"].values)
df["Timestamp"] = pd.to_datetime(df["Timestamp"], unit='s')
if scaler is not None:
# Option 1: scale based on numeric timestamp
df["Timestamp_numeric"] = df["Timestamp"].astype(np.int64) // 10**9
df["Date"] = scaler.fit_transform(df[["Timestamp_numeric"]])
return df
preprocessed_df = preprocess_data(
df, user_label_encoder, item_label_encoder, date_scaler
)
# Prepare edge_index for the graph-based model
u_t = torch.LongTensor(preprocessed_df.user_id_idx.values)
i_t = torch.LongTensor(preprocessed_df.item_id_idx.values) + n_users
edge_index = torch.stack((torch.cat([u_t, i_t]), torch.cat([i_t, u_t]))).to(device)
# Define LightGCNConv model
class LightGCNConv(MessagePassing):
def __init__(self, **kwargs):
super().__init__(aggr="add")
def forward(self, x, edge_index):
from_, to_ = edge_index
deg = degree(to_, x.size(0), dtype=x.dtype)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float("inf")] = 0
norm = deg_inv_sqrt[from_] * deg_inv_sqrt[to_]
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
class RecSysGNN(nn.Module):
def __init__(self, latent_dim, num_layers, num_users, num_items):
super(RecSysGNN, self).__init__()
self.embedding = nn.Embedding(num_users + num_items, latent_dim)
self.convs = nn.ModuleList(LightGCNConv() for _ in range(num_layers))
self.init_parameters()
def init_parameters(self):
nn.init.normal_(self.embedding.weight, std=0.1)
def forward(self, edge_index):
emb0 = self.embedding.weight
embs = [emb0]
emb = emb0
for conv in self.convs:
emb = conv(x=emb, edge_index=edge_index)
embs.append(emb)
out = torch.mean(torch.stack(embs, dim=0), dim=0)
return emb0, out
# model_path = get_latest_model()
MODEL_PATH_FILE = "/app/models/latest_model.txt"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_model_path():
"""Reads the latest model path from the file."""
if os.path.exists(MODEL_PATH_FILE):
with open(MODEL_PATH_FILE, "r") as f:
return f.read().strip()
return None
# Retrieve the model path from the file
model_path = get_model_path()
if not model_path:
raise FileNotFoundError("Model path file is missing or empty. Please train the model first.")
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at '{model_path}'. Please train the model first.")
print(f" Loading model from: {model_path}")
# Initialize the model
model = RecSysGNN(
latent_dim=64, num_layers=3, num_users=n_users, num_items=n_items
).to(device)
# Load the state dictionary
state_dict = torch.load(model_path, map_location=device)
model_state = model.state_dict()
# Filter the state_dict to only load matching parameters
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state and v.size() == model_state[k].size()}
# Update the model state dictionary with the filtered parameters
model_state.update(filtered_state_dict)
# Load the model state into the model
model.load_state_dict(model_state)
# Set the model to evaluation mode
model.eval()
print(f" Model loaded successfully from: {model_path}")
# Create user-product rating matrix
user_product_rating = preprocessed_df.pivot_table(
index="user_id_idx", columns="Item_ID", values="rating"
)
user_product_rating.fillna(0, inplace=True)
# Cosine similarity for content-based filtering
product_features = (
preprocessed_df[["Item_ID", "Product_Name", "Product_Category", "Product_Brand", "Price"]]
.drop_duplicates()
.set_index("Item_ID")
)
product_features_encoded = pd.get_dummies(product_features)
cosine_sim_df = pd.DataFrame(
cosine_similarity(product_features_encoded),
index=product_features_encoded.index,
columns=product_features_encoded.index,
)
# Item ID mapping
item_id_mapping = dict(zip(preprocessed_df["item_id_idx"], preprocessed_df["Item_ID"]))
product_name_mapping = dict(
zip(preprocessed_df["Item_ID"], preprocessed_df["Product_Name"])
)
user_gender_mapping = dict(
zip(preprocessed_df["user_id_idx"], preprocessed_df["Customer_Gender"])
)
cosine_sim_df.fillna(0, inplace=True)
# Set up logging configuration
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def content_based_filtering(user_id, top_k=20, time_weight=0.5):
try:
logging.info(f"Started content-based filtering for user {user_id}")
user_transactions = df[df["user_id_idx"] == user_id].sort_values(by="Timestamp", ascending=False)
content_scores = []
if user_id not in user_product_rating.index:
logging.warning(f"User {user_id} not found in rating matrix.")
return []
user_ratings = user_product_rating.loc[user_id]
for _, transaction in user_transactions.iterrows():
product = transaction["Item_ID"]
timestamp = transaction["Timestamp"]
time_factor = 1 / (1 + np.exp(-time_weight * timestamp))
if product in cosine_sim_df.index:
similar_products = cosine_sim_df.loc[product].nlargest(top_k)
for similar_product, score in similar_products.items():
weighted_score = (score * user_ratings.get(product, 0)) * time_factor
content_scores.append({
"item_id": similar_product,
"score": weighted_score
})
return sorted(content_scores, key=lambda x: x["score"], reverse=True)[:top_k]
except Exception as e:
logging.error(f"Error in content-based filtering for user {user_id}: {e}")
return []
# Define the class to receive the new user's preferences
class NewUserPreferences(BaseModel):
user_id: int
liked_categories: list
# Find the most similar user based on liked categories
def get_most_similar_user_by_categories(liked_categories):
if not liked_categories: # Ensure it's a valid list
return None
# Find users who bought products from the same categories
similar_users = preprocessed_df[
preprocessed_df["Product_Category"].isin(liked_categories)
]["user_id_idx"].value_counts()
logging.info(f"Most Similar Users: {similar_users}")
if not similar_users.empty:
return int(similar_users.idxmax()) # Most frequent user
return None
# Recommendation Function
def recommend(customer_id: str, top_k: int = 20, liked_categories: str = ""):
# Convert customer_id to user_id_idx
user_id = user_label_encoder.transform([customer_id])[0] if customer_id in user_label_encoder.classes_ else None
# Handle invalid customer_id
if user_id is None:
if not liked_categories:
return json.dumps({"error": "Customer ID not found. New users must provide liked categories"}, indent=2)
# Handle cold-start scenario for new users (new customer_id not in the dataset)
most_similar_user = get_most_similar_user_by_categories(liked_categories.split(','))
if most_similar_user is None:
logging.warning(f"No similar users found for liked categories: {liked_categories.split(',')}")
return json.dumps([], indent=2) # Return an empty list instead of hanging
# Use the most similar user for recommendations
user_id = most_similar_user
# Collaborative Filtering
logging.info("Starting collaborative filtering")
with torch.no_grad():
_, out = model(edge_index)
user_emb, item_emb = torch.split(out, (n_users, n_items))
user_embedding = user_emb[user_id]
collab_scores = torch.matmul(user_embedding, item_emb.T)
collab_top_k_indices = torch.topk(collab_scores, k=top_k).indices.tolist()
collab_recommendations = [
{
"item_id": int(item_id_mapping[idx]),
"product_name": product_name_mapping.get(idx, "Unknown"),
"score": float(collab_scores[idx])
}
for idx in collab_top_k_indices if idx in item_id_mapping
]
# Content-Based Filtering
content_recommendations = content_based_filtering(user_id, top_k)
# Hybrid Recommendation (Merging Scores)
hybrid_scores = {rec["item_id"]: rec["score"] for rec in collab_recommendations}
for rec in content_recommendations:
if rec["item_id"] in hybrid_scores:
hybrid_scores[rec["item_id"]] += rec["score"] # Merging scores
else:
hybrid_scores[rec["item_id"]] = rec["score"]
# Sort recommendations based on hybrid scores
hybrid_recommendations = sorted(
[{"item_id": item_id,"product_name": product_name_mapping.get(item_id, "Unknown"), "score": score} for item_id, score in hybrid_scores.items()],
key=lambda x: x["score"],
reverse=True
)[:top_k]
# Return top-k hybrid recommendations
return json.dumps(hybrid_recommendations, indent=2)
# import gradio as gr
# iface = gr.Interface(
# fn=recommend,
# inputs=[
# gr.Textbox(label="User ID"),
# gr.Number(label="Top K", value=20),
# gr.Textbox(label="Liked Categories (comma-separated)")
# ],
# outputs=gr.JSON(label="Recommendations"), # JSON output
# title="AI-Powered Product Recommendation System",
# description="Enter a user ID and get personalized product recommendations based on collaborative & content filtering."
# )
@app.get("/recommend/")
def get_recommendations(user_id: str, top_k: int = 20, liked_categories: str = ""):
result = recommend(user_id, top_k, liked_categories)
return JSONResponse(content=json.loads(result))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
# if __name__ == "__main__":
# iface.launch(server_name="0.0.0.0", server_port=7860)