Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- AI_Risk_app.py +182 -0
- requirements.txt +64 -0
AI_Risk_app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
from langchain_community.embeddings import OpenAIEmbeddings
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
def install_packages():
|
8 |
+
# List of packages to install in separate batches
|
9 |
+
packages_batches = [
|
10 |
+
["langchain", "langchain-openai", "langchain_core", "langchain-community", "langchainhub", "openai", "langchain-qdrant"],
|
11 |
+
["qdrant-client", "pymupdf", "pandas"],
|
12 |
+
["llama-index", "--no-cache-dir"],
|
13 |
+
["llama-parse", "PyPDF2", "tiktoken"],
|
14 |
+
["langchain-text-splitters"],
|
15 |
+
["PyPDF2"],
|
16 |
+
["scikit-learn"]
|
17 |
+
]
|
18 |
+
|
19 |
+
# Install each batch of packages
|
20 |
+
for package_list in packages_batches:
|
21 |
+
try:
|
22 |
+
print(f"Installing: {' '.join(package_list)}")
|
23 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install"] + package_list)
|
24 |
+
print(f"Successfully installed: {' '.join(package_list)}\n")
|
25 |
+
except subprocess.CalledProcessError as e:
|
26 |
+
print(f"Failed to install {package_list}: {e}\n")
|
27 |
+
|
28 |
+
# Call the function to install the packages
|
29 |
+
if __name__ == "__main__":
|
30 |
+
install_packages()
|
31 |
+
|
32 |
+
# Load environment variables from .env file
|
33 |
+
load_dotenv()
|
34 |
+
|
35 |
+
# Get the OpenAI API key from the environment variables
|
36 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
37 |
+
|
38 |
+
# Check if the API key is loaded
|
39 |
+
if not api_key:
|
40 |
+
print("OpenAI API key not found. Please ensure it is set in the .env file.")
|
41 |
+
else:
|
42 |
+
print("OpenAI API key loaded successfully.")
|
43 |
+
|
44 |
+
|
45 |
+
import nest_asyncio
|
46 |
+
nest_asyncio.apply()
|
47 |
+
|
48 |
+
# Function to extract text from PDF URLs
|
49 |
+
import re
|
50 |
+
import requests
|
51 |
+
from PyPDF2 import PdfReader
|
52 |
+
from io import BytesIO
|
53 |
+
|
54 |
+
# URLs for the two PDFs
|
55 |
+
pdf_urls = [
|
56 |
+
"https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf",
|
57 |
+
"https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf"
|
58 |
+
]
|
59 |
+
|
60 |
+
def extract_text_from_pdf(url):
|
61 |
+
response = requests.get(url)
|
62 |
+
pdf_file = BytesIO(response.content)
|
63 |
+
reader = PdfReader(pdf_file)
|
64 |
+
|
65 |
+
pdf_text = ""
|
66 |
+
for page in reader.pages:
|
67 |
+
pdf_text += page.extract_text()
|
68 |
+
|
69 |
+
cleaned_text = pdf_text.replace("\n", " ").replace("\r", " ").strip()
|
70 |
+
cleaned_text = " ".join(cleaned_text.split())
|
71 |
+
|
72 |
+
sentences = re.split(r'(?<=[.!?]) +', cleaned_text)
|
73 |
+
return sentences
|
74 |
+
|
75 |
+
# Extract text from both PDFs
|
76 |
+
sentences_list = []
|
77 |
+
for url in pdf_urls:
|
78 |
+
sentences = extract_text_from_pdf(url)
|
79 |
+
sentences_list.append(sentences)
|
80 |
+
print(f"Extracted {len(sentences)} sentences from {url}")
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
# Semantic chunking
|
85 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
86 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
87 |
+
import tiktoken
|
88 |
+
import numpy as np
|
89 |
+
|
90 |
+
embedding_model = OpenAIEmbeddings()
|
91 |
+
flat_sentences = [sentence for sublist in sentences_list for sentence in sublist]
|
92 |
+
embeddings = embedding_model.embed_documents(flat_sentences)
|
93 |
+
|
94 |
+
def greedy_chunk_sentences(sentences, sentence_embeddings, max_chunk_size=1000, similarity_threshold=0.75):
|
95 |
+
chunks = []
|
96 |
+
current_chunk = []
|
97 |
+
current_chunk_tokens = 0
|
98 |
+
encoder = tiktoken.get_encoding("cl100k_base")
|
99 |
+
|
100 |
+
for i, sentence in enumerate(sentences):
|
101 |
+
sentence_tokens = len(encoder.encode(sentence))
|
102 |
+
|
103 |
+
if current_chunk:
|
104 |
+
similarity = cosine_similarity([sentence_embeddings[i]], [sentence_embeddings[i - 1]])[0][0]
|
105 |
+
if similarity < similarity_threshold or current_chunk_tokens + sentence_tokens > max_chunk_size:
|
106 |
+
chunks.append(" ".join(current_chunk))
|
107 |
+
current_chunk = []
|
108 |
+
current_chunk_tokens = 0
|
109 |
+
|
110 |
+
current_chunk.append(sentence)
|
111 |
+
current_chunk_tokens += sentence_tokens
|
112 |
+
|
113 |
+
if current_chunk:
|
114 |
+
chunks.append(" ".join(current_chunk))
|
115 |
+
|
116 |
+
return chunks
|
117 |
+
|
118 |
+
# Perform greedy chunking
|
119 |
+
semantic_chunks = greedy_chunk_sentences(sentences_list[0], embeddings)
|
120 |
+
|
121 |
+
|
122 |
+
# Qdrant setup for storing chunks
|
123 |
+
from qdrant_client import QdrantClient
|
124 |
+
from qdrant_client.http.models import Distance, VectorParams
|
125 |
+
from langchain_qdrant import QdrantVectorStore
|
126 |
+
from langchain.schema import Document
|
127 |
+
import uuid
|
128 |
+
|
129 |
+
LOCATION = ":memory:"
|
130 |
+
COLLECTION_NAME = "Semantic_Chunking"
|
131 |
+
|
132 |
+
qdrant_client = QdrantClient(LOCATION)
|
133 |
+
|
134 |
+
qdrant_client.create_collection(
|
135 |
+
collection_name=COLLECTION_NAME,
|
136 |
+
vectors_config=VectorParams(size=1536, distance=Distance.COSINE)
|
137 |
+
)
|
138 |
+
|
139 |
+
qdrant_vector_store = QdrantVectorStore(
|
140 |
+
client=qdrant_client,
|
141 |
+
collection_name=COLLECTION_NAME,
|
142 |
+
embedding=embedding_model,
|
143 |
+
)
|
144 |
+
|
145 |
+
documents = [Document(page_content=chunk, metadata={"source": "generated"}, id=str(uuid.uuid4())) for chunk in semantic_chunks]
|
146 |
+
qdrant_vector_store.add_documents(documents)
|
147 |
+
|
148 |
+
# Retrieve data from Qdrant
|
149 |
+
retriever = qdrant_vector_store.as_retriever()
|
150 |
+
|
151 |
+
# Define prompt and execute RAG chain
|
152 |
+
from langchain.prompts import ChatPromptTemplate
|
153 |
+
from operator import itemgetter
|
154 |
+
from langchain_openai import ChatOpenAI
|
155 |
+
from langchain_core.output_parsers import StrOutputParser
|
156 |
+
from langchain_core.runnables import RunnablePassthrough
|
157 |
+
|
158 |
+
template = """
|
159 |
+
### You are a helpful assistant. Use the available context to answer the question. If you can't answer the question, say you don't know.
|
160 |
+
|
161 |
+
Question:
|
162 |
+
{question}
|
163 |
+
|
164 |
+
Context:
|
165 |
+
{context}
|
166 |
+
"""
|
167 |
+
|
168 |
+
prompt = ChatPromptTemplate.from_template(template)
|
169 |
+
|
170 |
+
primary_qa_llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0)
|
171 |
+
|
172 |
+
retrieval_augmented_qa_chain = (
|
173 |
+
{"context": itemgetter("question") | retriever, "question": itemgetter("question")}
|
174 |
+
| RunnablePassthrough.assign(context=itemgetter("context"))
|
175 |
+
| {"response": prompt | primary_qa_llm, "context": itemgetter("context")}
|
176 |
+
)
|
177 |
+
|
178 |
+
# Query the RAG chain
|
179 |
+
question = "What are the top AI risks and how to best manage them?"
|
180 |
+
result = retrieval_augmented_qa_chain.invoke({"question": question})
|
181 |
+
|
182 |
+
print(result["response"].content)
|
requirements.txt
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies
|
2 |
+
chainlit==1.2.0
|
3 |
+
openai==1.47.0
|
4 |
+
langchain-openai>=0.1.6,<0.2.0 # Updated version range for compatibility
|
5 |
+
langchain-core>=0.1.46,<0.2.0 # Matches langchain-openai version requirements
|
6 |
+
langchain-community
|
7 |
+
langchainhub
|
8 |
+
langchain-qdrant
|
9 |
+
streamlit
|
10 |
+
python-dotenv
|
11 |
+
langchain
|
12 |
+
openai
|
13 |
+
streamlit
|
14 |
+
python-dotenv
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
# Llama-index and related libraries
|
19 |
+
llama-index==0.11.11
|
20 |
+
llama-index-agent-openai==0.3.4
|
21 |
+
llama-index-cli==0.3.1
|
22 |
+
llama-index-core==0.11.11
|
23 |
+
llama-index-embeddings-openai==0.2.5
|
24 |
+
llama-index-indices-managed-llama-cloud==0.3.1
|
25 |
+
llama-index-legacy==0.9.48.post3
|
26 |
+
llama-index-llms-openai==0.2.9
|
27 |
+
llama-index-multi-modal-llms-openai==0.2.1
|
28 |
+
llama-index-program-openai==0.2.0
|
29 |
+
llama-index-question-gen-openai==0.2.0
|
30 |
+
llama-index-readers-file==0.2.2
|
31 |
+
llama-index-readers-llama-parse==0.3.0
|
32 |
+
llama-parse==0.5.6
|
33 |
+
|
34 |
+
# Llama Cloud
|
35 |
+
llama-cloud==0.0.17
|
36 |
+
|
37 |
+
# Additional libraries
|
38 |
+
qdrant-client # Ensure no conflicts with qdrant
|
39 |
+
pymupdf # Ensure compatibility
|
40 |
+
pandas==2.2.3 # Latest stable version
|
41 |
+
scikit-learn==1.5.2 # Latest available version
|
42 |
+
PyPDF2==3.0.1 # Fixed to avoid version conflict
|
43 |
+
|
44 |
+
# Tiktoken version (Updated to match langchain-openai's requirements)
|
45 |
+
tiktoken>=0.5.2,<0.6.0
|
46 |
+
|
47 |
+
# Dependency version conflict fix
|
48 |
+
packaging>=23.1,<24.0 # Pin packaging to avoid conflicts
|
49 |
+
|
50 |
+
# Networkx and Mypy (you can pin these to avoid pip backtracking)
|
51 |
+
networkx==3.2 # Pinned for compatibility
|
52 |
+
mypy-extensions==0.4.3
|
53 |
+
|
54 |
+
# Other dependencies
|
55 |
+
SQLAlchemy>=1.4.49 # Ensure compatibility
|
56 |
+
aiohttp>=3.8.6 # Compatible version
|
57 |
+
dataclasses-json>=0.6.7 # Ensure no conflicts with other libraries
|
58 |
+
fsspec>=2023.5.0 # Latest version for compatibility
|
59 |
+
nltk>3.8.1 # Latest available version
|
60 |
+
requests>=2.31.0 # Pinned version
|
61 |
+
tqdm>=4.66.1 # Ensure compatibility
|
62 |
+
jsonpointer==2.4
|
63 |
+
importlib-metadata>=6.0,<=8.0.0
|
64 |
+
opentelemetry-api==1.26.0
|