File size: 23,751 Bytes
055eaca
 
1d03387
055eaca
1d03387
055eaca
e3c888f
 
 
 
 
 
 
 
 
 
 
 
 
1d03387
055eaca
 
 
 
 
 
 
 
 
 
 
 
b68328e
9397567
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a32c68
 
e3c888f
 
6a32c68
 
e3c888f
6a32c68
 
 
 
 
 
e3c888f
6a32c68
e3c888f
6a32c68
 
 
 
 
 
 
 
 
 
e3c888f
 
 
 
 
 
 
 
 
 
 
 
 
6a32c68
055eaca
6a32c68
 
055eaca
 
 
 
 
9397567
 
 
 
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8daf258
 
 
 
6207486
8daf258
 
 
 
 
 
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7007011
055eaca
 
 
 
 
 
 
 
 
 
7007011
1d03387
 
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c888f
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c888f
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e6862e
055eaca
5e6862e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
055eaca
 
 
e3c888f
055eaca
 
9397567
 
 
6a32c68
 
 
9397567
6a32c68
 
 
2fbee37
 
9397567
2fbee37
 
 
 
 
 
 
 
9397567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a32c68
 
 
 
 
 
 
9397567
 
6a32c68
 
 
 
 
 
 
 
 
9397567
 
6a32c68
 
 
 
 
 
 
9397567
 
 
 
6a32c68
 
 
9397567
6a32c68
 
9397567
 
6a32c68
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9584c68
 
055eaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9584c68
055eaca
 
 
9397567
 
 
 
6207486
9397567
6207486
055eaca
9397567
1fbd787
 
 
 
 
 
 
 
 
 
055eaca
 
 
1d03387
055eaca
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
from datetime import datetime

# Import spaces for GPU decorator
try:
    import spaces
    HF_SPACES_GPU = True
except ImportError:
    HF_SPACES_GPU = False
    # Create a dummy decorator if spaces is not available
    class spaces:
        @staticmethod
        def GPU(func):
            return func

from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from enum import Enum
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin

# Try to import RMBG, fallback to local implementation
try:
    from transformers import pipeline
    rmbg_pipeline = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
    USE_RMBG_PIPELINE = True
except Exception as e:
    print(f"Failed to load RMBG pipeline: {e}")
    USE_RMBG_PIPELINE = False
    try:
        from briarmbg import BriaRMBG, simple_background_removal
    except:
        # Inline simple background removal
        def simple_background_removal(image):
            if isinstance(image, np.ndarray):
                img = image
            else:
                img = np.array(image)
            
            # Simple fallback - return full mask
            gray = np.mean(img, axis=2)
            mask = np.ones_like(gray)
            return mask

# Model setup
sd15_name = 'stablediffusionapi/realistic-vision-v51'

# Better CUDA detection and debugging
print("===== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
print()
print("=== GPU Detection Debug ===")
print(f"PyTorch version: {torch.__version__}")
print(f"Hugging Face Spaces GPU support: {HF_SPACES_GPU}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"CUDA version: {torch.version.cuda}")
    print(f"GPU count: {torch.cuda.device_count()}")
    print(f"Current GPU: {torch.cuda.current_device()}")
    print(f"GPU name: {torch.cuda.get_device_name()}")
    print("✅ GPU detected and available!")
else:
    print("❌ CUDA not available - checking reasons...")
    try:
        import subprocess
        result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
        if result.returncode == 0:
            print("nvidia-smi works, GPU hardware detected")
            print("Issue might be with PyTorch CUDA installation")
        else:
            print("nvidia-smi failed, no GPU hardware detected")
    except:
        print("nvidia-smi command not found")
    
    if HF_SPACES_GPU:
        print("🔄 Running on Hugging Face Spaces with @spaces.GPU decorator")
        print("   GPU will be allocated when GPU-decorated functions are called")
    else:
        print()
        print("🚨 WARNING: This application requires GPU to run properly!")
        print("📋 To fix this issue:")
        print("   1. Go to your Space settings: https://huggingface.co/spaces/GreenGoat/IClight-demo/settings")
        print("   2. In the Hardware section, select 'GPU basic' or higher")
        print("   3. Make sure your Hugging Face account is verified")
        print("   4. Check if you have available GPU quota")
    print()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Selected device: {device}")
print("=== End GPU Debug ===")

print(f"Using device: {device}")
print("Loading models...")

# Initialize models
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")

# Modify UNet for IC-Light
with torch.no_grad():
    new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
    new_conv_in.weight.zero_()
    new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
    new_conv_in.bias = unet.conv_in.bias
    unet.conv_in = new_conv_in

unet_original_forward = unet.forward

def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
    c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
    c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
    new_sample = torch.cat([sample, c_concat], dim=1)
    kwargs['cross_attention_kwargs'] = {}
    return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)

unet.forward = hooked_unet_forward

# Load IC-Light weights
model_path = './iclight_sd15_fbc.safetensors'
if not os.path.exists(model_path):
    print("Downloading IC-Light model...")
    try:
        from huggingface_hub import hf_hub_download
        model_path = hf_hub_download(
            repo_id="lllyasviel/ic-light",
            filename="iclight_sd15_fbc.safetensors"
        )
    except Exception as e:
        print(f"Failed to download with hf_hub_download: {e}")
        # Fallback to torch.hub
        from torch.hub import download_url_to_file
        download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)

sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged

# Move models to device
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
vae = vae.to(device=device, dtype=torch.bfloat16)
unet = unet.to(device=device, dtype=torch.float16)

# Scheduler
scheduler = DPMSolverMultistepScheduler(
    num_train_timesteps=1000,
    beta_start=0.00085,
    beta_end=0.012,
    algorithm_type="sde-dpmsolver++",
    use_karras_sigmas=True,
    steps_offset=1
)

# Pipelines
t2i_pipe = StableDiffusionPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None
)

i2i_pipe = StableDiffusionImg2ImgPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    scheduler=scheduler,
    safety_checker=None,
    requires_safety_checker=False,
    feature_extractor=None
)

print("Models loaded successfully!")

@torch.inference_mode()
def encode_prompt_inner(txt: str):
    max_length = tokenizer.model_max_length
    chunk_length = tokenizer.model_max_length - 2
    id_start = tokenizer.bos_token_id
    id_end = tokenizer.eos_token_id
    id_pad = id_end

    def pad(x, p, i):
        return x[:i] if len(x) >= i else x + [p] * (i - len(x))

    tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
    chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
    chunks = [pad(ck, id_pad, max_length) for ck in chunks]

    token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
    conds = text_encoder(token_ids).last_hidden_state

    return conds

@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
    c = encode_prompt_inner(positive_prompt)
    uc = encode_prompt_inner(negative_prompt)

    c_len = float(len(c))
    uc_len = float(len(uc))
    max_count = max(c_len, uc_len)
    c_repeat = int(math.ceil(max_count / c_len))
    uc_repeat = int(math.ceil(max_count / uc_len))
    max_chunk = max(len(c), len(uc))

    c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
    uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]

    c = torch.cat([p[None, ...] for p in c], dim=1)
    uc = torch.cat([p[None, ...] for p in uc], dim=1)

    return c, uc

@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        if quant:
            y = y * 127.5 + 127.5
            y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        else:
            y = y * 0.5 + 0.5
            y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
        results.append(y)
    return results

@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
    h = h.movedim(-1, 1)
    return h

def resize_and_center_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    original_width, original_height = pil_image.size
    scale_factor = max(target_width / original_width, target_height / original_height)
    new_width = int(original_width * scale_factor)
    new_height = int(original_height * scale_factor)
    pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
    left = (new_width - target_width) / 2
    top = (new_height - target_height) / 2
    right = (new_width + target_width) / 2
    bottom = (new_height + target_height) / 2
    pil_image = pil_image.crop((left, top, right, bottom))
    return np.array(pil_image)

def resize_without_crop(image, target_width, target_height):
    pil_image = Image.fromarray(image)
    pil_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(pil_image)

@spaces.GPU
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
    # Simplified background removal
    if USE_RMBG_PIPELINE:
        # Using transformers pipeline
        try:
            result = rmbg_pipeline(Image.fromarray(img))
            mask = np.array(result['mask'])
            if len(mask.shape) == 3:
                mask = mask[:, :, 0]
            mask = mask.astype(np.float32) / 255.0
        except Exception as e:
            print(f"RMBG pipeline failed: {e}, using fallback")
            mask = simple_background_removal(img)
    else:
        # Using simple background removal
        mask = simple_background_removal(img)
    
    # Apply sigma smoothing
    if sigma > 0:
        try:
            from scipy import ndimage
            mask = ndimage.gaussian_filter(mask, sigma=sigma)
        except ImportError:
            # Fallback if scipy is not available
            pass
    
    # Create RGBA output
    result = np.dstack((img, (mask * 255).astype(np.uint8)))
    return img, mask

class BGSource(Enum):
    UPLOAD = "Use Background Image"
    UPLOAD_FLIP = "Use Flipped Background Image"
    LEFT = "Left Light"
    RIGHT = "Right Light"
    TOP = "Top Light"
    BOTTOM = "Bottom Light"
    GREY = "Ambient"

@spaces.GPU
@torch.inference_mode()
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    bg_source = BGSource(bg_source)

    if bg_source == BGSource.UPLOAD:
        pass
    elif bg_source == BGSource.UPLOAD_FLIP:
        input_bg = np.fliplr(input_bg)
    elif bg_source == BGSource.GREY:
        input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
    elif bg_source == BGSource.LEFT:
        gradient = np.linspace(224, 32, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.RIGHT:
        gradient = np.linspace(32, 224, image_width)
        image = np.tile(gradient, (image_height, 1))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.TOP:
        gradient = np.linspace(224, 32, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    elif bg_source == BGSource.BOTTOM:
        gradient = np.linspace(32, 224, image_height)[:, None]
        image = np.tile(gradient, (1, image_width))
        input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
    else:
        raise ValueError('Wrong background source!')

    rng = torch.Generator(device=device).manual_seed(seed)

    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)

    latents = t2i_pipe(
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=steps,
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels)  # Use default quant=True for first pass
    
    # Always perform highres processing like the original code
    pixels = [resize_without_crop(
        image=p,
        target_width=int(round(image_width * highres_scale / 64.0) * 64),
        target_height=int(round(image_height * highres_scale / 64.0) * 64))
    for p in pixels]

    pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
    latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
    latents = latents.to(device=unet.device, dtype=unet.dtype)

    image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
    fg = resize_and_center_crop(input_fg, image_width, image_height)
    bg = resize_and_center_crop(input_bg, image_width, image_height)
    concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
    concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
    concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)

    latents = i2i_pipe(
        image=latents,
        strength=highres_denoise,
        prompt_embeds=conds,
        negative_prompt_embeds=unconds,
        width=image_width,
        height=image_height,
        num_inference_steps=int(round(steps / highres_denoise)),
        num_images_per_prompt=num_samples,
        generator=rng,
        output_type='latent',
        guidance_scale=cfg,
        cross_attention_kwargs={'concat_conds': concat_conds},
    ).images.to(vae.dtype) / vae.config.scaling_factor

    pixels = vae.decode(latents).sample
    pixels = pytorch2numpy(pixels, quant=False)  # Return 0-1 range floats for final result

    return pixels, [fg, bg]

@spaces.GPU
@torch.inference_mode()
def process_relight(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
    try:
        # Input validation
        if input_fg is None:
            error_msg = "❌ Please upload a foreground image"
            print(error_msg)
            raise gr.Error(error_msg)
        if input_bg is None and bg_source == "Use Background Image":
            error_msg = "❌ Please upload a background image or choose a lighting direction"
            print(error_msg)
            raise gr.Error(error_msg)
        
        # Handle empty prompt - provide default when using background image
        if not prompt.strip():
            if bg_source == "Use Background Image" or bg_source == "Use Flipped Background Image":
                # When using background image as light source, use a generic default prompt
                prompt = "best quality, detailed"
                print(f"Using default prompt for background lighting: {prompt}")
            else:
                error_msg = "❌ Please enter a prompt"
                print(error_msg)
                raise gr.Error(error_msg)
        
        print(f"Processing with device: {device}")
        print(f"Input shapes - FG: {input_fg.shape}, BG: {input_bg.shape if input_bg is not None else 'None'}")
        
        # Optimize for Hugging Face free GPU (limited memory)
        if device.type == 'cuda':
            # Limit image size for free GPU tier
            max_size = 768  # Increased for GPU but still conservative
            if image_width > max_size or image_height > max_size:
                scale = min(max_size / image_width, max_size / image_height)
                image_width = int(image_width * scale // 64) * 64  # Keep multiple of 64
                image_height = int(image_height * scale // 64) * 64
                print(f"Reduced image size for GPU memory: {image_width}x{image_height}")
            
            # Disable highres for free tier to save memory
            if highres_scale > 1.0:
                highres_scale = 1.0
                print("Disabled highres scaling to save GPU memory")
                
        elif device.type == 'cpu':
            # Limit image size for CPU processing
            max_size = 512
            if image_width > max_size or image_height > max_size:
                image_width = min(image_width, max_size)
                image_height = min(image_height, max_size)
                print(f"Reduced image size for CPU: {image_width}x{image_height}")
            
            # Limit number of samples for CPU
            if num_samples > 1:
                num_samples = 1
                print("Reduced num_samples to 1 for CPU processing")
        
        print("Running background removal...")
        try:
            input_fg, matting = run_rmbg(input_fg)
            print("Background removal completed successfully")
        except Exception as e:
            print(f"Background removal failed: {e}")
            # Continue without background removal
            matting = np.ones((input_fg.shape[0], input_fg.shape[1]), dtype=np.float32)
        
        print("Starting main processing...")
        try:
            results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
            print("Main processing completed successfully")
        except Exception as e:
            error_msg = f"❌ Processing failed: {str(e)}"
            print(error_msg)
            import traceback
            traceback.print_exc()
            raise gr.Error(error_msg)
        
        print("Converting results...")
        try:
            results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
            print("Results converted successfully")
        except Exception as e:
            error_msg = f"❌ Result conversion failed: {str(e)}"
            print(error_msg)
            raise gr.Error(error_msg)
        
        print("Processing completed successfully!")
        return results + extra_images
        
    except gr.Error:
        # Re-raise Gradio errors to show them in the UI
        raise
    except Exception as e:
        error_msg = f"❌ Unexpected error: {str(e)}"
        print(error_msg)
        import traceback
        traceback.print_exc()
        raise gr.Error(error_msg)

# Quick prompts for easy testing
quick_prompts = [
    'beautiful woman, cinematic lighting',
    'handsome man, cinematic lighting',
    'beautiful woman, natural lighting',
    'handsome man, natural lighting',
    'beautiful woman, neo punk lighting, cyberpunk',
    'handsome man, neo punk lighting, cyberpunk',
]
quick_prompts = [[x] for x in quick_prompts]

# Gradio Interface
def create_demo():
    with gr.Blocks(title="IC-Light Background Conditional Relighting") as demo:
        gr.Markdown("## IC-Light: Relighting with Foreground and Background Condition")
        gr.Markdown("Upload a foreground image and background image (or choose lighting direction) to perform relighting.")
        
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    input_fg = gr.Image(label="Foreground Image", height=400, type="numpy")
                    input_bg = gr.Image(label="Background Image", height=400, type="numpy")
                
                prompt = gr.Textbox(label="Prompt", value="beautiful woman, cinematic lighting")
                bg_source = gr.Radio(
                    choices=[e.value for e in BGSource],
                    value=BGSource.UPLOAD.value,
                    label="Background Source"
                )
                
                example_prompts = gr.Dataset(
                    samples=quick_prompts, 
                    label='Quick Prompts', 
                    components=[prompt]
                )
                
                relight_button = gr.Button(value="✨ Relight Image", variant="primary")
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Row():
                        num_samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
                        seed = gr.Number(label="Seed", value=12345, precision=0)
                    with gr.Row():
                        image_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
                        image_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=640, step=64)
                    with gr.Row():
                        steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
                        cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1)
                    with gr.Row():
                        highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.5, step=0.1)
                        highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
                    
                    a_prompt = gr.Textbox(label="Additional Prompt", value='best quality')
                    n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
            
            with gr.Column():
                result_gallery = gr.Gallery(label='Results', height=600, columns=2, rows=2)
        
        # Event handlers
        inputs = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
        relight_button.click(
            fn=process_relight, 
            inputs=inputs, 
            outputs=[result_gallery],
            show_progress=True
        )
        example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False)
        
        # Examples - temporarily disabled due to missing image files
        # gr.Examples(
        #     examples=[
        #         ["examples/person1.jpg", "examples/bg1.jpg", "beautiful woman, cinematic lighting", "Use Background Image"],
        #         ["examples/person2.jpg", None, "handsome man, dramatic lighting", "Left Light"],
        #     ],
        #     inputs=[input_fg, input_bg, prompt, bg_source],
        #     outputs=[result_gallery],
        #     fn=process_relight,
        #     cache_examples=False,
        # )
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue(max_size=20)
    demo.launch(
        server_name='0.0.0.0', 
        server_port=7860,
        show_error=True,
        share=False
    )