Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,751 Bytes
055eaca 1d03387 055eaca 1d03387 055eaca e3c888f 1d03387 055eaca b68328e 9397567 055eaca 6a32c68 e3c888f 6a32c68 e3c888f 6a32c68 e3c888f 6a32c68 e3c888f 6a32c68 e3c888f 6a32c68 055eaca 6a32c68 055eaca 9397567 055eaca 8daf258 6207486 8daf258 055eaca 7007011 055eaca 7007011 1d03387 055eaca e3c888f 055eaca e3c888f 055eaca 5e6862e 055eaca 5e6862e 055eaca e3c888f 055eaca 9397567 6a32c68 9397567 6a32c68 2fbee37 9397567 2fbee37 9397567 6a32c68 9397567 6a32c68 9397567 6a32c68 9397567 6a32c68 9397567 6a32c68 9397567 6a32c68 055eaca 9584c68 055eaca 9584c68 055eaca 9397567 6207486 9397567 6207486 055eaca 9397567 1fbd787 055eaca 1d03387 055eaca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
from datetime import datetime
# Import spaces for GPU decorator
try:
import spaces
HF_SPACES_GPU = True
except ImportError:
HF_SPACES_GPU = False
# Create a dummy decorator if spaces is not available
class spaces:
@staticmethod
def GPU(func):
return func
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from enum import Enum
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
# Try to import RMBG, fallback to local implementation
try:
from transformers import pipeline
rmbg_pipeline = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
USE_RMBG_PIPELINE = True
except Exception as e:
print(f"Failed to load RMBG pipeline: {e}")
USE_RMBG_PIPELINE = False
try:
from briarmbg import BriaRMBG, simple_background_removal
except:
# Inline simple background removal
def simple_background_removal(image):
if isinstance(image, np.ndarray):
img = image
else:
img = np.array(image)
# Simple fallback - return full mask
gray = np.mean(img, axis=2)
mask = np.ones_like(gray)
return mask
# Model setup
sd15_name = 'stablediffusionapi/realistic-vision-v51'
# Better CUDA detection and debugging
print("===== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
print()
print("=== GPU Detection Debug ===")
print(f"PyTorch version: {torch.__version__}")
print(f"Hugging Face Spaces GPU support: {HF_SPACES_GPU}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU count: {torch.cuda.device_count()}")
print(f"Current GPU: {torch.cuda.current_device()}")
print(f"GPU name: {torch.cuda.get_device_name()}")
print("✅ GPU detected and available!")
else:
print("❌ CUDA not available - checking reasons...")
try:
import subprocess
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
if result.returncode == 0:
print("nvidia-smi works, GPU hardware detected")
print("Issue might be with PyTorch CUDA installation")
else:
print("nvidia-smi failed, no GPU hardware detected")
except:
print("nvidia-smi command not found")
if HF_SPACES_GPU:
print("🔄 Running on Hugging Face Spaces with @spaces.GPU decorator")
print(" GPU will be allocated when GPU-decorated functions are called")
else:
print()
print("🚨 WARNING: This application requires GPU to run properly!")
print("📋 To fix this issue:")
print(" 1. Go to your Space settings: https://huggingface.co/spaces/GreenGoat/IClight-demo/settings")
print(" 2. In the Hardware section, select 'GPU basic' or higher")
print(" 3. Make sure your Hugging Face account is verified")
print(" 4. Check if you have available GPU quota")
print()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Selected device: {device}")
print("=== End GPU Debug ===")
print(f"Using device: {device}")
print("Loading models...")
# Initialize models
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
# Modify UNet for IC-Light
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load IC-Light weights
model_path = './iclight_sd15_fbc.safetensors'
if not os.path.exists(model_path):
print("Downloading IC-Light model...")
try:
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="lllyasviel/ic-light",
filename="iclight_sd15_fbc.safetensors"
)
except Exception as e:
print(f"Failed to download with hf_hub_download: {e}")
# Fallback to torch.hub
from torch.hub import download_url_to_file
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
# Move models to device
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
vae = vae.to(device=device, dtype=torch.bfloat16)
unet = unet.to(device=device, dtype=torch.float16)
# Scheduler
scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None
)
print("Models loaded successfully!")
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - target_width) / 2
top = (new_height - target_height) / 2
right = (new_width + target_width) / 2
bottom = (new_height + target_height) / 2
pil_image = pil_image.crop((left, top, right, bottom))
return np.array(pil_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
pil_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(pil_image)
@spaces.GPU
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
# Simplified background removal
if USE_RMBG_PIPELINE:
# Using transformers pipeline
try:
result = rmbg_pipeline(Image.fromarray(img))
mask = np.array(result['mask'])
if len(mask.shape) == 3:
mask = mask[:, :, 0]
mask = mask.astype(np.float32) / 255.0
except Exception as e:
print(f"RMBG pipeline failed: {e}, using fallback")
mask = simple_background_removal(img)
else:
# Using simple background removal
mask = simple_background_removal(img)
# Apply sigma smoothing
if sigma > 0:
try:
from scipy import ndimage
mask = ndimage.gaussian_filter(mask, sigma=sigma)
except ImportError:
# Fallback if scipy is not available
pass
# Create RGBA output
result = np.dstack((img, (mask * 255).astype(np.uint8)))
return img, mask
class BGSource(Enum):
UPLOAD = "Use Background Image"
UPLOAD_FLIP = "Use Flipped Background Image"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
GREY = "Ambient"
@spaces.GPU
@torch.inference_mode()
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise ValueError('Wrong background source!')
rng = torch.Generator(device=device).manual_seed(seed)
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels) # Use default quant=True for first pass
# Always perform highres processing like the original code
pixels = [resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels, quant=False) # Return 0-1 range floats for final result
return pixels, [fg, bg]
@spaces.GPU
@torch.inference_mode()
def process_relight(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
try:
# Input validation
if input_fg is None:
error_msg = "❌ Please upload a foreground image"
print(error_msg)
raise gr.Error(error_msg)
if input_bg is None and bg_source == "Use Background Image":
error_msg = "❌ Please upload a background image or choose a lighting direction"
print(error_msg)
raise gr.Error(error_msg)
# Handle empty prompt - provide default when using background image
if not prompt.strip():
if bg_source == "Use Background Image" or bg_source == "Use Flipped Background Image":
# When using background image as light source, use a generic default prompt
prompt = "best quality, detailed"
print(f"Using default prompt for background lighting: {prompt}")
else:
error_msg = "❌ Please enter a prompt"
print(error_msg)
raise gr.Error(error_msg)
print(f"Processing with device: {device}")
print(f"Input shapes - FG: {input_fg.shape}, BG: {input_bg.shape if input_bg is not None else 'None'}")
# Optimize for Hugging Face free GPU (limited memory)
if device.type == 'cuda':
# Limit image size for free GPU tier
max_size = 768 # Increased for GPU but still conservative
if image_width > max_size or image_height > max_size:
scale = min(max_size / image_width, max_size / image_height)
image_width = int(image_width * scale // 64) * 64 # Keep multiple of 64
image_height = int(image_height * scale // 64) * 64
print(f"Reduced image size for GPU memory: {image_width}x{image_height}")
# Disable highres for free tier to save memory
if highres_scale > 1.0:
highres_scale = 1.0
print("Disabled highres scaling to save GPU memory")
elif device.type == 'cpu':
# Limit image size for CPU processing
max_size = 512
if image_width > max_size or image_height > max_size:
image_width = min(image_width, max_size)
image_height = min(image_height, max_size)
print(f"Reduced image size for CPU: {image_width}x{image_height}")
# Limit number of samples for CPU
if num_samples > 1:
num_samples = 1
print("Reduced num_samples to 1 for CPU processing")
print("Running background removal...")
try:
input_fg, matting = run_rmbg(input_fg)
print("Background removal completed successfully")
except Exception as e:
print(f"Background removal failed: {e}")
# Continue without background removal
matting = np.ones((input_fg.shape[0], input_fg.shape[1]), dtype=np.float32)
print("Starting main processing...")
try:
results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
print("Main processing completed successfully")
except Exception as e:
error_msg = f"❌ Processing failed: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
raise gr.Error(error_msg)
print("Converting results...")
try:
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
print("Results converted successfully")
except Exception as e:
error_msg = f"❌ Result conversion failed: {str(e)}"
print(error_msg)
raise gr.Error(error_msg)
print("Processing completed successfully!")
return results + extra_images
except gr.Error:
# Re-raise Gradio errors to show them in the UI
raise
except Exception as e:
error_msg = f"❌ Unexpected error: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
raise gr.Error(error_msg)
# Quick prompts for easy testing
quick_prompts = [
'beautiful woman, cinematic lighting',
'handsome man, cinematic lighting',
'beautiful woman, natural lighting',
'handsome man, natural lighting',
'beautiful woman, neo punk lighting, cyberpunk',
'handsome man, neo punk lighting, cyberpunk',
]
quick_prompts = [[x] for x in quick_prompts]
# Gradio Interface
def create_demo():
with gr.Blocks(title="IC-Light Background Conditional Relighting") as demo:
gr.Markdown("## IC-Light: Relighting with Foreground and Background Condition")
gr.Markdown("Upload a foreground image and background image (or choose lighting direction) to perform relighting.")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Image(label="Foreground Image", height=400, type="numpy")
input_bg = gr.Image(label="Background Image", height=400, type="numpy")
prompt = gr.Textbox(label="Prompt", value="beautiful woman, cinematic lighting")
bg_source = gr.Radio(
choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source"
)
example_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts',
components=[prompt]
)
relight_button = gr.Button(value="✨ Relight Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
num_samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1)
with gr.Row():
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.5, step=0.1)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
a_prompt = gr.Textbox(label="Additional Prompt", value='best quality')
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
with gr.Column():
result_gallery = gr.Gallery(label='Results', height=600, columns=2, rows=2)
# Event handlers
inputs = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
relight_button.click(
fn=process_relight,
inputs=inputs,
outputs=[result_gallery],
show_progress=True
)
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False)
# Examples - temporarily disabled due to missing image files
# gr.Examples(
# examples=[
# ["examples/person1.jpg", "examples/bg1.jpg", "beautiful woman, cinematic lighting", "Use Background Image"],
# ["examples/person2.jpg", None, "handsome man, dramatic lighting", "Left Light"],
# ],
# inputs=[input_fg, input_bg, prompt, bg_source],
# outputs=[result_gallery],
# fn=process_relight,
# cache_examples=False,
# )
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20)
demo.launch(
server_name='0.0.0.0',
server_port=7860,
show_error=True,
share=False
)
|