IClight-demo / app.py
GreenGoat's picture
Update app.py
2fbee37 verified
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
from datetime import datetime
# Import spaces for GPU decorator
try:
import spaces
HF_SPACES_GPU = True
except ImportError:
HF_SPACES_GPU = False
# Create a dummy decorator if spaces is not available
class spaces:
@staticmethod
def GPU(func):
return func
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from enum import Enum
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
# Try to import RMBG, fallback to local implementation
try:
from transformers import pipeline
rmbg_pipeline = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
USE_RMBG_PIPELINE = True
except Exception as e:
print(f"Failed to load RMBG pipeline: {e}")
USE_RMBG_PIPELINE = False
try:
from briarmbg import BriaRMBG, simple_background_removal
except:
# Inline simple background removal
def simple_background_removal(image):
if isinstance(image, np.ndarray):
img = image
else:
img = np.array(image)
# Simple fallback - return full mask
gray = np.mean(img, axis=2)
mask = np.ones_like(gray)
return mask
# Model setup
sd15_name = 'stablediffusionapi/realistic-vision-v51'
# Better CUDA detection and debugging
print("===== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
print()
print("=== GPU Detection Debug ===")
print(f"PyTorch version: {torch.__version__}")
print(f"Hugging Face Spaces GPU support: {HF_SPACES_GPU}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU count: {torch.cuda.device_count()}")
print(f"Current GPU: {torch.cuda.current_device()}")
print(f"GPU name: {torch.cuda.get_device_name()}")
print("✅ GPU detected and available!")
else:
print("❌ CUDA not available - checking reasons...")
try:
import subprocess
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True)
if result.returncode == 0:
print("nvidia-smi works, GPU hardware detected")
print("Issue might be with PyTorch CUDA installation")
else:
print("nvidia-smi failed, no GPU hardware detected")
except:
print("nvidia-smi command not found")
if HF_SPACES_GPU:
print("🔄 Running on Hugging Face Spaces with @spaces.GPU decorator")
print(" GPU will be allocated when GPU-decorated functions are called")
else:
print()
print("🚨 WARNING: This application requires GPU to run properly!")
print("📋 To fix this issue:")
print(" 1. Go to your Space settings: https://huggingface.co/spaces/GreenGoat/IClight-demo/settings")
print(" 2. In the Hardware section, select 'GPU basic' or higher")
print(" 3. Make sure your Hugging Face account is verified")
print(" 4. Check if you have available GPU quota")
print()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Selected device: {device}")
print("=== End GPU Debug ===")
print(f"Using device: {device}")
print("Loading models...")
# Initialize models
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
# Modify UNet for IC-Light
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
# Load IC-Light weights
model_path = './iclight_sd15_fbc.safetensors'
if not os.path.exists(model_path):
print("Downloading IC-Light model...")
try:
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="lllyasviel/ic-light",
filename="iclight_sd15_fbc.safetensors"
)
except Exception as e:
print(f"Failed to download with hf_hub_download: {e}")
# Fallback to torch.hub
from torch.hub import download_url_to_file
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path)
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged
# Move models to device
text_encoder = text_encoder.to(device=device, dtype=torch.float16)
vae = vae.to(device=device, dtype=torch.bfloat16)
unet = unet.to(device=device, dtype=torch.float16)
# Scheduler
scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None
)
print("Models loaded successfully!")
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
left = (new_width - target_width) / 2
top = (new_height - target_height) / 2
right = (new_width + target_width) / 2
bottom = (new_height + target_height) / 2
pil_image = pil_image.crop((left, top, right, bottom))
return np.array(pil_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
pil_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(pil_image)
@spaces.GPU
@torch.inference_mode()
def run_rmbg(img, sigma=0.0):
# Simplified background removal
if USE_RMBG_PIPELINE:
# Using transformers pipeline
try:
result = rmbg_pipeline(Image.fromarray(img))
mask = np.array(result['mask'])
if len(mask.shape) == 3:
mask = mask[:, :, 0]
mask = mask.astype(np.float32) / 255.0
except Exception as e:
print(f"RMBG pipeline failed: {e}, using fallback")
mask = simple_background_removal(img)
else:
# Using simple background removal
mask = simple_background_removal(img)
# Apply sigma smoothing
if sigma > 0:
try:
from scipy import ndimage
mask = ndimage.gaussian_filter(mask, sigma=sigma)
except ImportError:
# Fallback if scipy is not available
pass
# Create RGBA output
result = np.dstack((img, (mask * 255).astype(np.uint8)))
return img, mask
class BGSource(Enum):
UPLOAD = "Use Background Image"
UPLOAD_FLIP = "Use Flipped Background Image"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
GREY = "Ambient"
@spaces.GPU
@torch.inference_mode()
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise ValueError('Wrong background source!')
rng = torch.Generator(device=device).manual_seed(seed)
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels) # Use default quant=True for first pass
# Always perform highres processing like the original code
pixels = [resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels, quant=False) # Return 0-1 range floats for final result
return pixels, [fg, bg]
@spaces.GPU
@torch.inference_mode()
def process_relight(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
try:
# Input validation
if input_fg is None:
error_msg = "❌ Please upload a foreground image"
print(error_msg)
raise gr.Error(error_msg)
if input_bg is None and bg_source == "Use Background Image":
error_msg = "❌ Please upload a background image or choose a lighting direction"
print(error_msg)
raise gr.Error(error_msg)
# Handle empty prompt - provide default when using background image
if not prompt.strip():
if bg_source == "Use Background Image" or bg_source == "Use Flipped Background Image":
# When using background image as light source, use a generic default prompt
prompt = "best quality, detailed"
print(f"Using default prompt for background lighting: {prompt}")
else:
error_msg = "❌ Please enter a prompt"
print(error_msg)
raise gr.Error(error_msg)
print(f"Processing with device: {device}")
print(f"Input shapes - FG: {input_fg.shape}, BG: {input_bg.shape if input_bg is not None else 'None'}")
# Optimize for Hugging Face free GPU (limited memory)
if device.type == 'cuda':
# Limit image size for free GPU tier
max_size = 768 # Increased for GPU but still conservative
if image_width > max_size or image_height > max_size:
scale = min(max_size / image_width, max_size / image_height)
image_width = int(image_width * scale // 64) * 64 # Keep multiple of 64
image_height = int(image_height * scale // 64) * 64
print(f"Reduced image size for GPU memory: {image_width}x{image_height}")
# Disable highres for free tier to save memory
if highres_scale > 1.0:
highres_scale = 1.0
print("Disabled highres scaling to save GPU memory")
elif device.type == 'cpu':
# Limit image size for CPU processing
max_size = 512
if image_width > max_size or image_height > max_size:
image_width = min(image_width, max_size)
image_height = min(image_height, max_size)
print(f"Reduced image size for CPU: {image_width}x{image_height}")
# Limit number of samples for CPU
if num_samples > 1:
num_samples = 1
print("Reduced num_samples to 1 for CPU processing")
print("Running background removal...")
try:
input_fg, matting = run_rmbg(input_fg)
print("Background removal completed successfully")
except Exception as e:
print(f"Background removal failed: {e}")
# Continue without background removal
matting = np.ones((input_fg.shape[0], input_fg.shape[1]), dtype=np.float32)
print("Starting main processing...")
try:
results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
print("Main processing completed successfully")
except Exception as e:
error_msg = f"❌ Processing failed: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
raise gr.Error(error_msg)
print("Converting results...")
try:
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
print("Results converted successfully")
except Exception as e:
error_msg = f"❌ Result conversion failed: {str(e)}"
print(error_msg)
raise gr.Error(error_msg)
print("Processing completed successfully!")
return results + extra_images
except gr.Error:
# Re-raise Gradio errors to show them in the UI
raise
except Exception as e:
error_msg = f"❌ Unexpected error: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
raise gr.Error(error_msg)
# Quick prompts for easy testing
quick_prompts = [
'beautiful woman, cinematic lighting',
'handsome man, cinematic lighting',
'beautiful woman, natural lighting',
'handsome man, natural lighting',
'beautiful woman, neo punk lighting, cyberpunk',
'handsome man, neo punk lighting, cyberpunk',
]
quick_prompts = [[x] for x in quick_prompts]
# Gradio Interface
def create_demo():
with gr.Blocks(title="IC-Light Background Conditional Relighting") as demo:
gr.Markdown("## IC-Light: Relighting with Foreground and Background Condition")
gr.Markdown("Upload a foreground image and background image (or choose lighting direction) to perform relighting.")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Image(label="Foreground Image", height=400, type="numpy")
input_bg = gr.Image(label="Background Image", height=400, type="numpy")
prompt = gr.Textbox(label="Prompt", value="beautiful woman, cinematic lighting")
bg_source = gr.Radio(
choices=[e.value for e in BGSource],
value=BGSource.UPLOAD.value,
label="Background Source"
)
example_prompts = gr.Dataset(
samples=quick_prompts,
label='Quick Prompts',
components=[prompt]
)
relight_button = gr.Button(value="✨ Relight Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
num_samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1)
with gr.Row():
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.5, step=0.1)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.1)
a_prompt = gr.Textbox(label="Additional Prompt", value='best quality')
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
with gr.Column():
result_gallery = gr.Gallery(label='Results', height=600, columns=2, rows=2)
# Event handlers
inputs = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source]
relight_button.click(
fn=process_relight,
inputs=inputs,
outputs=[result_gallery],
show_progress=True
)
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False)
# Examples - temporarily disabled due to missing image files
# gr.Examples(
# examples=[
# ["examples/person1.jpg", "examples/bg1.jpg", "beautiful woman, cinematic lighting", "Use Background Image"],
# ["examples/person2.jpg", None, "handsome man, dramatic lighting", "Left Light"],
# ],
# inputs=[input_fg, input_bg, prompt, bg_source],
# outputs=[result_gallery],
# fn=process_relight,
# cache_examples=False,
# )
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue(max_size=20)
demo.launch(
server_name='0.0.0.0',
server_port=7860,
show_error=True,
share=False
)