Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import math | |
import gradio as gr | |
import numpy as np | |
import torch | |
import safetensors.torch as sf | |
from datetime import datetime | |
# Import spaces for GPU decorator | |
try: | |
import spaces | |
HF_SPACES_GPU = True | |
except ImportError: | |
HF_SPACES_GPU = False | |
# Create a dummy decorator if spaces is not available | |
class spaces: | |
def GPU(func): | |
return func | |
from PIL import Image | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline | |
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from enum import Enum | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from huggingface_hub import PyTorchModelHubMixin | |
# Try to import RMBG, fallback to local implementation | |
try: | |
from transformers import pipeline | |
rmbg_pipeline = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True) | |
USE_RMBG_PIPELINE = True | |
except Exception as e: | |
print(f"Failed to load RMBG pipeline: {e}") | |
USE_RMBG_PIPELINE = False | |
try: | |
from briarmbg import BriaRMBG, simple_background_removal | |
except: | |
# Inline simple background removal | |
def simple_background_removal(image): | |
if isinstance(image, np.ndarray): | |
img = image | |
else: | |
img = np.array(image) | |
# Simple fallback - return full mask | |
gray = np.mean(img, axis=2) | |
mask = np.ones_like(gray) | |
return mask | |
# Model setup | |
sd15_name = 'stablediffusionapi/realistic-vision-v51' | |
# Better CUDA detection and debugging | |
print("===== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====") | |
print() | |
print("=== GPU Detection Debug ===") | |
print(f"PyTorch version: {torch.__version__}") | |
print(f"Hugging Face Spaces GPU support: {HF_SPACES_GPU}") | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
print(f"CUDA version: {torch.version.cuda}") | |
print(f"GPU count: {torch.cuda.device_count()}") | |
print(f"Current GPU: {torch.cuda.current_device()}") | |
print(f"GPU name: {torch.cuda.get_device_name()}") | |
print("✅ GPU detected and available!") | |
else: | |
print("❌ CUDA not available - checking reasons...") | |
try: | |
import subprocess | |
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True) | |
if result.returncode == 0: | |
print("nvidia-smi works, GPU hardware detected") | |
print("Issue might be with PyTorch CUDA installation") | |
else: | |
print("nvidia-smi failed, no GPU hardware detected") | |
except: | |
print("nvidia-smi command not found") | |
if HF_SPACES_GPU: | |
print("🔄 Running on Hugging Face Spaces with @spaces.GPU decorator") | |
print(" GPU will be allocated when GPU-decorated functions are called") | |
else: | |
print() | |
print("🚨 WARNING: This application requires GPU to run properly!") | |
print("📋 To fix this issue:") | |
print(" 1. Go to your Space settings: https://huggingface.co/spaces/GreenGoat/IClight-demo/settings") | |
print(" 2. In the Hardware section, select 'GPU basic' or higher") | |
print(" 3. Make sure your Hugging Face account is verified") | |
print(" 4. Check if you have available GPU quota") | |
print() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print(f"Selected device: {device}") | |
print("=== End GPU Debug ===") | |
print(f"Using device: {device}") | |
print("Loading models...") | |
# Initialize models | |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet") | |
# Modify UNet for IC-Light | |
with torch.no_grad(): | |
new_conv_in = torch.nn.Conv2d(12, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding) | |
new_conv_in.weight.zero_() | |
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) | |
new_conv_in.bias = unet.conv_in.bias | |
unet.conv_in = new_conv_in | |
unet_original_forward = unet.forward | |
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs): | |
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample) | |
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0) | |
new_sample = torch.cat([sample, c_concat], dim=1) | |
kwargs['cross_attention_kwargs'] = {} | |
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs) | |
unet.forward = hooked_unet_forward | |
# Load IC-Light weights | |
model_path = './iclight_sd15_fbc.safetensors' | |
if not os.path.exists(model_path): | |
print("Downloading IC-Light model...") | |
try: | |
from huggingface_hub import hf_hub_download | |
model_path = hf_hub_download( | |
repo_id="lllyasviel/ic-light", | |
filename="iclight_sd15_fbc.safetensors" | |
) | |
except Exception as e: | |
print(f"Failed to download with hf_hub_download: {e}") | |
# Fallback to torch.hub | |
from torch.hub import download_url_to_file | |
download_url_to_file(url='https://huggingface.co/lllyasviel/ic-light/resolve/main/iclight_sd15_fbc.safetensors', dst=model_path) | |
sd_offset = sf.load_file(model_path) | |
sd_origin = unet.state_dict() | |
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()} | |
unet.load_state_dict(sd_merged, strict=True) | |
del sd_offset, sd_origin, sd_merged | |
# Move models to device | |
text_encoder = text_encoder.to(device=device, dtype=torch.float16) | |
vae = vae.to(device=device, dtype=torch.bfloat16) | |
unet = unet.to(device=device, dtype=torch.float16) | |
# Scheduler | |
scheduler = DPMSolverMultistepScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
algorithm_type="sde-dpmsolver++", | |
use_karras_sigmas=True, | |
steps_offset=1 | |
) | |
# Pipelines | |
t2i_pipe = StableDiffusionPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None | |
) | |
i2i_pipe = StableDiffusionImg2ImgPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=None, | |
requires_safety_checker=False, | |
feature_extractor=None | |
) | |
print("Models loaded successfully!") | |
def encode_prompt_inner(txt: str): | |
max_length = tokenizer.model_max_length | |
chunk_length = tokenizer.model_max_length - 2 | |
id_start = tokenizer.bos_token_id | |
id_end = tokenizer.eos_token_id | |
id_pad = id_end | |
def pad(x, p, i): | |
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) | |
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"] | |
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)] | |
chunks = [pad(ck, id_pad, max_length) for ck in chunks] | |
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64) | |
conds = text_encoder(token_ids).last_hidden_state | |
return conds | |
def encode_prompt_pair(positive_prompt, negative_prompt): | |
c = encode_prompt_inner(positive_prompt) | |
uc = encode_prompt_inner(negative_prompt) | |
c_len = float(len(c)) | |
uc_len = float(len(uc)) | |
max_count = max(c_len, uc_len) | |
c_repeat = int(math.ceil(max_count / c_len)) | |
uc_repeat = int(math.ceil(max_count / uc_len)) | |
max_chunk = max(len(c), len(uc)) | |
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk] | |
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk] | |
c = torch.cat([p[None, ...] for p in c], dim=1) | |
uc = torch.cat([p[None, ...] for p in uc], dim=1) | |
return c, uc | |
def pytorch2numpy(imgs, quant=True): | |
results = [] | |
for x in imgs: | |
y = x.movedim(0, -1) | |
if quant: | |
y = y * 127.5 + 127.5 | |
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8) | |
else: | |
y = y * 0.5 + 0.5 | |
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32) | |
results.append(y) | |
return results | |
def numpy2pytorch(imgs): | |
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 | |
h = h.movedim(-1, 1) | |
return h | |
def resize_and_center_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
original_width, original_height = pil_image.size | |
scale_factor = max(target_width / original_width, target_height / original_height) | |
new_width = int(original_width * scale_factor) | |
new_height = int(original_height * scale_factor) | |
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS) | |
left = (new_width - target_width) / 2 | |
top = (new_height - target_height) / 2 | |
right = (new_width + target_width) / 2 | |
bottom = (new_height + target_height) / 2 | |
pil_image = pil_image.crop((left, top, right, bottom)) | |
return np.array(pil_image) | |
def resize_without_crop(image, target_width, target_height): | |
pil_image = Image.fromarray(image) | |
pil_image = pil_image.resize((target_width, target_height), Image.LANCZOS) | |
return np.array(pil_image) | |
def run_rmbg(img, sigma=0.0): | |
# Simplified background removal | |
if USE_RMBG_PIPELINE: | |
# Using transformers pipeline | |
try: | |
result = rmbg_pipeline(Image.fromarray(img)) | |
mask = np.array(result['mask']) | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
mask = mask.astype(np.float32) / 255.0 | |
except Exception as e: | |
print(f"RMBG pipeline failed: {e}, using fallback") | |
mask = simple_background_removal(img) | |
else: | |
# Using simple background removal | |
mask = simple_background_removal(img) | |
# Apply sigma smoothing | |
if sigma > 0: | |
try: | |
from scipy import ndimage | |
mask = ndimage.gaussian_filter(mask, sigma=sigma) | |
except ImportError: | |
# Fallback if scipy is not available | |
pass | |
# Create RGBA output | |
result = np.dstack((img, (mask * 255).astype(np.uint8))) | |
return img, mask | |
class BGSource(Enum): | |
UPLOAD = "Use Background Image" | |
UPLOAD_FLIP = "Use Flipped Background Image" | |
LEFT = "Left Light" | |
RIGHT = "Right Light" | |
TOP = "Top Light" | |
BOTTOM = "Bottom Light" | |
GREY = "Ambient" | |
def process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
bg_source = BGSource(bg_source) | |
if bg_source == BGSource.UPLOAD: | |
pass | |
elif bg_source == BGSource.UPLOAD_FLIP: | |
input_bg = np.fliplr(input_bg) | |
elif bg_source == BGSource.GREY: | |
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64 | |
elif bg_source == BGSource.LEFT: | |
gradient = np.linspace(224, 32, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.RIGHT: | |
gradient = np.linspace(32, 224, image_width) | |
image = np.tile(gradient, (image_height, 1)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.TOP: | |
gradient = np.linspace(224, 32, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
elif bg_source == BGSource.BOTTOM: | |
gradient = np.linspace(32, 224, image_height)[:, None] | |
image = np.tile(gradient, (1, image_width)) | |
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8) | |
else: | |
raise ValueError('Wrong background source!') | |
rng = torch.Generator(device=device).manual_seed(seed) | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt) | |
latents = t2i_pipe( | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels) # Use default quant=True for first pass | |
# Always perform highres processing like the original code | |
pixels = [resize_without_crop( | |
image=p, | |
target_width=int(round(image_width * highres_scale / 64.0) * 64), | |
target_height=int(round(image_height * highres_scale / 64.0) * 64)) | |
for p in pixels] | |
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype) | |
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor | |
latents = latents.to(device=unet.device, dtype=unet.dtype) | |
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8 | |
fg = resize_and_center_crop(input_fg, image_width, image_height) | |
bg = resize_and_center_crop(input_bg, image_width, image_height) | |
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype) | |
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor | |
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1) | |
latents = i2i_pipe( | |
image=latents, | |
strength=highres_denoise, | |
prompt_embeds=conds, | |
negative_prompt_embeds=unconds, | |
width=image_width, | |
height=image_height, | |
num_inference_steps=int(round(steps / highres_denoise)), | |
num_images_per_prompt=num_samples, | |
generator=rng, | |
output_type='latent', | |
guidance_scale=cfg, | |
cross_attention_kwargs={'concat_conds': concat_conds}, | |
).images.to(vae.dtype) / vae.config.scaling_factor | |
pixels = vae.decode(latents).sample | |
pixels = pytorch2numpy(pixels, quant=False) # Return 0-1 range floats for final result | |
return pixels, [fg, bg] | |
def process_relight(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source): | |
try: | |
# Input validation | |
if input_fg is None: | |
error_msg = "❌ Please upload a foreground image" | |
print(error_msg) | |
raise gr.Error(error_msg) | |
if input_bg is None and bg_source == "Use Background Image": | |
error_msg = "❌ Please upload a background image or choose a lighting direction" | |
print(error_msg) | |
raise gr.Error(error_msg) | |
# Handle empty prompt - provide default when using background image | |
if not prompt.strip(): | |
if bg_source == "Use Background Image" or bg_source == "Use Flipped Background Image": | |
# When using background image as light source, use a generic default prompt | |
prompt = "best quality, detailed" | |
print(f"Using default prompt for background lighting: {prompt}") | |
else: | |
error_msg = "❌ Please enter a prompt" | |
print(error_msg) | |
raise gr.Error(error_msg) | |
print(f"Processing with device: {device}") | |
print(f"Input shapes - FG: {input_fg.shape}, BG: {input_bg.shape if input_bg is not None else 'None'}") | |
# Optimize for Hugging Face free GPU (limited memory) | |
if device.type == 'cuda': | |
# Limit image size for free GPU tier | |
max_size = 768 # Increased for GPU but still conservative | |
if image_width > max_size or image_height > max_size: | |
scale = min(max_size / image_width, max_size / image_height) | |
image_width = int(image_width * scale // 64) * 64 # Keep multiple of 64 | |
image_height = int(image_height * scale // 64) * 64 | |
print(f"Reduced image size for GPU memory: {image_width}x{image_height}") | |
# Disable highres for free tier to save memory | |
if highres_scale > 1.0: | |
highres_scale = 1.0 | |
print("Disabled highres scaling to save GPU memory") | |
elif device.type == 'cpu': | |
# Limit image size for CPU processing | |
max_size = 512 | |
if image_width > max_size or image_height > max_size: | |
image_width = min(image_width, max_size) | |
image_height = min(image_height, max_size) | |
print(f"Reduced image size for CPU: {image_width}x{image_height}") | |
# Limit number of samples for CPU | |
if num_samples > 1: | |
num_samples = 1 | |
print("Reduced num_samples to 1 for CPU processing") | |
print("Running background removal...") | |
try: | |
input_fg, matting = run_rmbg(input_fg) | |
print("Background removal completed successfully") | |
except Exception as e: | |
print(f"Background removal failed: {e}") | |
# Continue without background removal | |
matting = np.ones((input_fg.shape[0], input_fg.shape[1]), dtype=np.float32) | |
print("Starting main processing...") | |
try: | |
results, extra_images = process(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source) | |
print("Main processing completed successfully") | |
except Exception as e: | |
error_msg = f"❌ Processing failed: {str(e)}" | |
print(error_msg) | |
import traceback | |
traceback.print_exc() | |
raise gr.Error(error_msg) | |
print("Converting results...") | |
try: | |
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results] | |
print("Results converted successfully") | |
except Exception as e: | |
error_msg = f"❌ Result conversion failed: {str(e)}" | |
print(error_msg) | |
raise gr.Error(error_msg) | |
print("Processing completed successfully!") | |
return results + extra_images | |
except gr.Error: | |
# Re-raise Gradio errors to show them in the UI | |
raise | |
except Exception as e: | |
error_msg = f"❌ Unexpected error: {str(e)}" | |
print(error_msg) | |
import traceback | |
traceback.print_exc() | |
raise gr.Error(error_msg) | |
# Quick prompts for easy testing | |
quick_prompts = [ | |
'beautiful woman, cinematic lighting', | |
'handsome man, cinematic lighting', | |
'beautiful woman, natural lighting', | |
'handsome man, natural lighting', | |
'beautiful woman, neo punk lighting, cyberpunk', | |
'handsome man, neo punk lighting, cyberpunk', | |
] | |
quick_prompts = [[x] for x in quick_prompts] | |
# Gradio Interface | |
def create_demo(): | |
with gr.Blocks(title="IC-Light Background Conditional Relighting") as demo: | |
gr.Markdown("## IC-Light: Relighting with Foreground and Background Condition") | |
gr.Markdown("Upload a foreground image and background image (or choose lighting direction) to perform relighting.") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_fg = gr.Image(label="Foreground Image", height=400, type="numpy") | |
input_bg = gr.Image(label="Background Image", height=400, type="numpy") | |
prompt = gr.Textbox(label="Prompt", value="beautiful woman, cinematic lighting") | |
bg_source = gr.Radio( | |
choices=[e.value for e in BGSource], | |
value=BGSource.UPLOAD.value, | |
label="Background Source" | |
) | |
example_prompts = gr.Dataset( | |
samples=quick_prompts, | |
label='Quick Prompts', | |
components=[prompt] | |
) | |
relight_button = gr.Button(value="✨ Relight Image", variant="primary") | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
num_samples = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1) | |
seed = gr.Number(label="Seed", value=12345, precision=0) | |
with gr.Row(): | |
image_width = gr.Slider(label="Width", minimum=256, maximum=1024, value=512, step=64) | |
image_height = gr.Slider(label="Height", minimum=256, maximum=1024, value=640, step=64) | |
with gr.Row(): | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1) | |
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=20.0, value=7.0, step=0.1) | |
with gr.Row(): | |
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=2.0, value=1.5, step=0.1) | |
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=0.9, value=0.5, step=0.1) | |
a_prompt = gr.Textbox(label="Additional Prompt", value='best quality') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Results', height=600, columns=2, rows=2) | |
# Event handlers | |
inputs = [input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source] | |
relight_button.click( | |
fn=process_relight, | |
inputs=inputs, | |
outputs=[result_gallery], | |
show_progress=True | |
) | |
example_prompts.click(lambda x: x[0], inputs=example_prompts, outputs=prompt, show_progress=False) | |
# Examples - temporarily disabled due to missing image files | |
# gr.Examples( | |
# examples=[ | |
# ["examples/person1.jpg", "examples/bg1.jpg", "beautiful woman, cinematic lighting", "Use Background Image"], | |
# ["examples/person2.jpg", None, "handsome man, dramatic lighting", "Left Light"], | |
# ], | |
# inputs=[input_fg, input_bg, prompt, bg_source], | |
# outputs=[result_gallery], | |
# fn=process_relight, | |
# cache_examples=False, | |
# ) | |
return demo | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.queue(max_size=20) | |
demo.launch( | |
server_name='0.0.0.0', | |
server_port=7860, | |
show_error=True, | |
share=False | |
) | |