case_study / fine_tuning.py
GurgenGulay's picture
Update fine_tuning.py
000e05e verified
raw
history blame
3.36 kB
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments
from datasets import Dataset
from sklearn.model_selection import train_test_split
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
stop_words = set(stopwords.words('english'))
ps = PorterStemmer()
def clean_text(text):
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\d+', '', text)
text = text.lower()
text = " ".join([word for word in text.split() if word not in stop_words])
text = " ".join([ps.stem(word) for word in word_tokenize(text)])
return text
def read_prompts(file_path):
input_texts = []
target_texts = []
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
for line in lines:
if line.startswith("input:"):
input_texts.append(line.replace("input:", "").strip())
elif line.startswith("target:"):
target_texts.append(line.replace("target:", "").strip())
return input_texts, target_texts
def prepare_data(input_texts, target_texts):
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length")
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length")
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
def paraphrase_with_model(text, model, tokenizer):
prompt = "paraphrase: " + text
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
output_ids = model.generate(
inputs["input_ids"],
do_sample=True,
top_k=50,
top_p=0.95,
temperature=1.0,
max_length=150,
no_repeat_ngram_size=2,
early_stopping=True
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True, max_length=150)
model_name = "t5-base"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
input_texts, target_texts = read_prompts("prompts.txt")
input_texts_cleaned = [clean_text(text) for text in input_texts]
target_texts_cleaned = [clean_text(text) for text in target_texts]
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
augmented_input_texts = input_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
augmented_target_texts = target_texts_cleaned[:10] + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts))
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels))
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="steps",
learning_rate=5e-5,
per_device_train_batch_size=4,
num_train_epochs=3,
save_steps=500,
logging_dir="./logs",
logging_steps=10
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset
)
trainer.train()
model.save_pretrained("./fine_tuned_model")
tokenizer.save_pretrained("./fine_tuned_model")