Spaces:
Runtime error
Runtime error
import logging | |
from transformers import T5Tokenizer, T5ForConditionalGeneration, Trainer, TrainingArguments | |
from datasets import Dataset | |
from sklearn.model_selection import train_test_split | |
import re | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
logger = logging.getLogger(__name__) | |
stop_words = {"and", "or", "but", "the", "is", "are", "was", "were", "a", "an", "in", "on", "at", "of", "to", "with"} | |
def stem_word(word): | |
suffixes = ['ing', 'ed', 'ly', 's', 'es', 'er'] | |
for suffix in suffixes: | |
if word.endswith(suffix): | |
return word[:-len(suffix)] | |
return word | |
def clean_text(text): | |
text = re.sub(r'[^\w\s]', '', text) | |
text = re.sub(r'\d+', '', text) | |
text = text.lower() | |
text = " ".join([word for word in text.split() if word not in stop_words]) | |
text = " ".join([stem_word(word) for word in text.split()]) | |
return text | |
def read_prompts(file_path): | |
input_texts = [] | |
target_texts = [] | |
with open(file_path, "r", encoding="utf-8") as file: | |
lines = file.readlines() | |
for line in lines: | |
if line.startswith("input:"): | |
input_texts.append(line.replace("input:", "").strip()) | |
elif line.startswith("target:"): | |
target_texts.append(line.replace("target:", "").strip()) | |
return input_texts, target_texts | |
def prepare_data(input_texts, target_texts): | |
inputs = tokenizer(input_texts, max_length=512, truncation=True, padding="max_length") | |
targets = tokenizer(target_texts, max_length=512, truncation=True, padding="max_length") | |
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]} | |
# Fine-tuning | |
def fine_tune_model(): | |
model_name = "t5-base" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
try: | |
logger.info("Reading and cleaning prompts.") | |
input_texts, target_texts = read_prompts("prompts.txt") | |
input_texts_cleaned = [clean_text(text) for text in input_texts] | |
target_texts_cleaned = [clean_text(text) for text in target_texts] | |
logger.info("Splitting dataset into training and validation sets.") | |
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1) | |
logger.info("Preparing datasets for training.") | |
train_dataset = Dataset.from_dict(prepare_data(train_texts, train_labels, tokenizer)) | |
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels, tokenizer)) | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="steps", | |
learning_rate=5e-5, | |
per_device_train_batch_size=4, | |
num_train_epochs=3, | |
save_steps=500, | |
logging_dir="./logs", | |
logging_steps=10 | |
) | |
logger.info("Starting model training.") | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset | |
) | |
trainer.train() | |
logger.info("Saving fine-tuned model.") | |
model.save_pretrained("./fine_tuned_model") | |
tokenizer.save_pretrained("./fine_tuned_model") | |
except Exception as e: | |
logger.error(f"An error occurred during fine-tuning: {str(e)}") | |
fine_tune_model() |