Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,27 @@
|
|
1 |
-
import re
|
2 |
import spacy
|
3 |
-
from transformers import T5Tokenizer
|
4 |
-
from
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from spacy.cli import download
|
7 |
|
8 |
-
#
|
9 |
-
download("en_core_web_sm")
|
10 |
nlp = spacy.load("en_core_web_sm")
|
11 |
|
12 |
-
|
13 |
-
def clean_text_for_education_with_spacy(text):
|
14 |
doc = nlp(text)
|
15 |
tokens = [token.text for token in doc if not token.is_stop and not token.is_punct]
|
16 |
return " ".join(tokens)
|
17 |
|
18 |
-
#
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
-
inputs = tokenizer(input_texts, max_length=256, truncation=True, padding="max_length")
|
34 |
-
targets = tokenizer(target_texts, max_length=256, truncation=True, padding="max_length")
|
35 |
-
return {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "labels": targets["input_ids"]}
|
36 |
-
|
37 |
-
# Paraphrasing fonksiyonu
|
38 |
-
def paraphrase_with_model(text, model, tokenizer):
|
39 |
-
prompt = "Teach the following content: " + text
|
40 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
41 |
-
output_ids = model.generate(
|
42 |
-
inputs["input_ids"],
|
43 |
-
do_sample=True,
|
44 |
-
top_k=50,
|
45 |
-
top_p=0.95,
|
46 |
-
temperature=1.0,
|
47 |
-
max_length=150,
|
48 |
-
no_repeat_ngram_size=2,
|
49 |
-
early_stopping=True
|
50 |
-
)
|
51 |
-
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
52 |
-
|
53 |
-
# Tokenizer ve model yükleme
|
54 |
-
model_name = "t5-base"
|
55 |
-
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
56 |
-
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
57 |
-
|
58 |
-
# Veriyi okuma ve temizleme
|
59 |
-
input_texts, target_texts = read_prompts("prompts.txt")
|
60 |
-
input_texts_cleaned = [clean_text_for_education_with_spacy(text) for text in input_texts]
|
61 |
-
target_texts_cleaned = [clean_text_for_education_with_spacy(text) for text in target_texts]
|
62 |
-
|
63 |
-
# Eğitim ve doğrulama verisini ayırma
|
64 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(input_texts_cleaned, target_texts_cleaned, test_size=0.1)
|
65 |
-
|
66 |
-
# Augmentasyon ve dataset hazırlama
|
67 |
-
augmented_input_texts = input_texts_cleaned + [paraphrase_with_model(text, model, tokenizer) for text in input_texts_cleaned[:10]]
|
68 |
-
augmented_target_texts = target_texts_cleaned + [paraphrase_with_model(text, model, tokenizer) for text in target_texts_cleaned[:10]]
|
69 |
-
train_dataset = Dataset.from_dict(prepare_data(augmented_input_texts, augmented_target_texts, tokenizer))
|
70 |
-
val_dataset = Dataset.from_dict(prepare_data(val_texts, val_labels, tokenizer))
|
71 |
-
|
72 |
-
# Eğitim argümanları
|
73 |
-
training_args = TrainingArguments(
|
74 |
-
output_dir="./results",
|
75 |
-
evaluation_strategy="steps",
|
76 |
-
learning_rate=5e-5,
|
77 |
-
per_device_train_batch_size=4,
|
78 |
-
num_train_epochs=3,
|
79 |
-
save_steps=500,
|
80 |
-
logging_dir="./logs",
|
81 |
-
logging_steps=10
|
82 |
-
)
|
83 |
-
|
84 |
-
# Trainer
|
85 |
-
trainer = Trainer(
|
86 |
-
model=model,
|
87 |
-
args=training_args,
|
88 |
-
train_dataset=train_dataset,
|
89 |
-
eval_dataset=val_dataset
|
90 |
-
)
|
91 |
-
|
92 |
-
# Eğitim
|
93 |
-
trainer.train()
|
94 |
-
|
95 |
-
# Model kaydetme
|
96 |
-
model.save_pretrained("./fine_tuned_model")
|
97 |
-
tokenizer.save_pretrained("./fine_tuned_model")
|
|
|
|
|
1 |
import spacy
|
2 |
+
from transformers import T5Tokenizer
|
3 |
+
from fine_tuning import fine_tune_model # fine_tuning.py'deki fonksiyonu içe aktar
|
|
|
|
|
4 |
|
5 |
+
# spaCy modelini yükle
|
|
|
6 |
nlp = spacy.load("en_core_web_sm")
|
7 |
|
8 |
+
def clean_text_with_spacy(text):
|
|
|
9 |
doc = nlp(text)
|
10 |
tokens = [token.text for token in doc if not token.is_stop and not token.is_punct]
|
11 |
return " ".join(tokens)
|
12 |
|
13 |
+
# Temizlenmiş metni modelinize göndermek için fonksiyon
|
14 |
+
def process_input_for_fine_tuning(input_texts, target_texts):
|
15 |
+
# Metni temizle
|
16 |
+
cleaned_input_texts = [clean_text_with_spacy(text) for text in input_texts]
|
17 |
+
cleaned_target_texts = [clean_text_with_spacy(text) for text in target_texts]
|
18 |
+
|
19 |
+
# Temizlenmiş metni fine-tuning için gönder
|
20 |
+
fine_tune_model(cleaned_input_texts, cleaned_target_texts)
|
21 |
+
|
22 |
+
# Örnek metinler
|
23 |
+
input_texts = ["This is a sample input text.", "Another input text here."]
|
24 |
+
target_texts = ["This is the target output.", "Target output for second example."]
|
25 |
+
|
26 |
+
# Temizlenmiş veriyi fine_tuning.py'ye göndermek için işlemi başlat
|
27 |
+
process_input_for_fine_tuning(input_texts, target_texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|