Spaces:
Sleeping
Sleeping
File size: 11,054 Bytes
e066bcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import os
import requests
from requests.adapters import HTTPAdapter
import torch
from torch import nn
from torch.nn import functional as F
from .utils.download import download_url_to_file
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
super().__init__()
self.conv = nn.Conv2d(
in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=False
) # verify bias false
self.bn = nn.BatchNorm2d(
out_planes,
eps=0.001, # value found in tensorflow
momentum=0.1, # default pytorch value
affine=True
)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Block35(nn.Module):
def __init__(self, scale=1.0):
super().__init__()
self.scale = scale
self.branch0 = BasicConv2d(256, 32, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(256, 32, kernel_size=1, stride=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
)
self.branch2 = nn.Sequential(
BasicConv2d(256, 32, kernel_size=1, stride=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
)
self.conv2d = nn.Conv2d(96, 256, kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
out = self.conv2d(out)
out = out * self.scale + x
out = self.relu(out)
return out
class Block17(nn.Module):
def __init__(self, scale=1.0):
super().__init__()
self.scale = scale
self.branch0 = BasicConv2d(896, 128, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(896, 128, kernel_size=1, stride=1),
BasicConv2d(128, 128, kernel_size=(1,7), stride=1, padding=(0,3)),
BasicConv2d(128, 128, kernel_size=(7,1), stride=1, padding=(3,0))
)
self.conv2d = nn.Conv2d(256, 896, kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
out = torch.cat((x0, x1), 1)
out = self.conv2d(out)
out = out * self.scale + x
out = self.relu(out)
return out
class Block8(nn.Module):
def __init__(self, scale=1.0, noReLU=False):
super().__init__()
self.scale = scale
self.noReLU = noReLU
self.branch0 = BasicConv2d(1792, 192, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(1792, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=(1,3), stride=1, padding=(0,1)),
BasicConv2d(192, 192, kernel_size=(3,1), stride=1, padding=(1,0))
)
self.conv2d = nn.Conv2d(384, 1792, kernel_size=1, stride=1)
if not self.noReLU:
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
out = torch.cat((x0, x1), 1)
out = self.conv2d(out)
out = out * self.scale + x
if not self.noReLU:
out = self.relu(out)
return out
class Mixed_6a(nn.Module):
def __init__(self):
super().__init__()
self.branch0 = BasicConv2d(256, 384, kernel_size=3, stride=2)
self.branch1 = nn.Sequential(
BasicConv2d(256, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=3, stride=1, padding=1),
BasicConv2d(192, 256, kernel_size=3, stride=2)
)
self.branch2 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
return out
class Mixed_7a(nn.Module):
def __init__(self):
super().__init__()
self.branch0 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 384, kernel_size=3, stride=2)
)
self.branch1 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 256, kernel_size=3, stride=2)
)
self.branch2 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1),
BasicConv2d(256, 256, kernel_size=3, stride=2)
)
self.branch3 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class InceptionResnetV1(nn.Module):
"""Inception Resnet V1 model with optional loading of pretrained weights.
Model parameters can be loaded based on pretraining on the VGGFace2 or CASIA-Webface
datasets. Pretrained state_dicts are automatically downloaded on model instantiation if
requested and cached in the torch cache. Subsequent instantiations use the cache rather than
redownloading.
Keyword Arguments:
pretrained {str} -- Optional pretraining dataset. Either 'vggface2' or 'casia-webface'.
(default: {None})
classify {bool} -- Whether the model should output classification probabilities or feature
embeddings. (default: {False})
num_classes {int} -- Number of output classes. If 'pretrained' is set and num_classes not
equal to that used for the pretrained model, the final linear layer will be randomly
initialized. (default: {None})
dropout_prob {float} -- Dropout probability. (default: {0.6})
"""
def __init__(self, pretrained=None, classify=False, num_classes=None, dropout_prob=0.6, device=None):
super().__init__()
# Set simple attributes
self.pretrained = pretrained
self.classify = classify
self.num_classes = num_classes
if pretrained == 'vggface2':
tmp_classes = 8631
elif pretrained == 'casia-webface':
tmp_classes = 10575
elif pretrained is None and self.classify and self.num_classes is None:
raise Exception('If "pretrained" is not specified and "classify" is True, "num_classes" must be specified')
# Define layers
self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2)
self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1)
self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.maxpool_3a = nn.MaxPool2d(3, stride=2)
self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1)
self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1)
self.conv2d_4b = BasicConv2d(192, 256, kernel_size=3, stride=2)
self.repeat_1 = nn.Sequential(
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
)
self.mixed_6a = Mixed_6a()
self.repeat_2 = nn.Sequential(
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
)
self.mixed_7a = Mixed_7a()
self.repeat_3 = nn.Sequential(
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
)
self.block8 = Block8(noReLU=True)
self.avgpool_1a = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(dropout_prob)
self.last_linear = nn.Linear(1792, 512, bias=False)
self.last_bn = nn.BatchNorm1d(512, eps=0.001, momentum=0.1, affine=True)
if pretrained is not None:
self.logits = nn.Linear(512, tmp_classes)
load_weights(self, pretrained)
if self.classify and self.num_classes is not None:
self.logits = nn.Linear(512, self.num_classes)
self.device = torch.device('cpu')
if device is not None:
self.device = device
self.to(device)
def forward(self, x):
"""Calculate embeddings or logits given a batch of input image tensors.
Arguments:
x {torch.tensor} -- Batch of image tensors representing faces.
Returns:
torch.tensor -- Batch of embedding vectors or multinomial logits.
"""
x = self.conv2d_1a(x)
x = self.conv2d_2a(x)
x = self.conv2d_2b(x)
x = self.maxpool_3a(x)
x = self.conv2d_3b(x)
x = self.conv2d_4a(x)
x = self.conv2d_4b(x)
x = self.repeat_1(x)
x = self.mixed_6a(x)
x = self.repeat_2(x)
x = self.mixed_7a(x)
x = self.repeat_3(x)
x = self.block8(x)
x = self.avgpool_1a(x)
x = self.dropout(x)
x = self.last_linear(x.view(x.shape[0], -1))
x = self.last_bn(x)
if self.classify:
x = self.logits(x)
else:
x = F.normalize(x, p=2, dim=1)
return x
def load_weights(mdl, name):
"""Download pretrained state_dict and load into model.
Arguments:
mdl {torch.nn.Module} -- Pytorch model.
name {str} -- Name of dataset that was used to generate pretrained state_dict.
Raises:
ValueError: If 'pretrained' not equal to 'vggface2' or 'casia-webface'.
"""
if name == 'vggface2':
path = 'https://github.com/timesler/facenet-pytorch/releases/download/v2.2.9/20180402-114759-vggface2.pt'
elif name == 'casia-webface':
path = 'https://github.com/timesler/facenet-pytorch/releases/download/v2.2.9/20180408-102900-casia-webface.pt'
else:
raise ValueError('Pretrained models only exist for "vggface2" and "casia-webface"')
model_dir = os.path.join(get_torch_home(), 'checkpoints')
os.makedirs(model_dir, exist_ok=True)
cached_file = os.path.join(model_dir, os.path.basename(path))
if not os.path.exists(cached_file):
download_url_to_file(path, cached_file)
state_dict = torch.load(cached_file)
mdl.load_state_dict(state_dict)
def get_torch_home():
torch_home = os.path.expanduser(
os.getenv(
'TORCH_HOME',
os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')
)
)
return torch_home
|