Spaces:
Runtime error
Runtime error
Update README.md
#1
by
xphillyx
- opened
- .DS_Store +0 -0
- README.md +2 -2
- app.py +30 -168
- lora_models.json +2 -7
- readme.md +2 -2
- requirements.txt +1 -4
.DS_Store
DELETED
Binary file (6.15 kB)
|
|
README.md
CHANGED
@@ -4,9 +4,9 @@ emoji: π
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.14.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,106 +1,57 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import os
|
|
|
6 |
import random
|
7 |
import json
|
|
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from torchvision import transforms
|
11 |
-
import zipfile
|
12 |
|
13 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
14 |
from PIL import Image
|
15 |
-
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = 2048
|
19 |
|
20 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
# sam = LangSAM(model_type="sam2-hiera-large").to(device)
|
22 |
-
|
23 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# def download_model(model_name, model_path):
|
29 |
-
# print(f"Downloading model: {model_name} from {model_path}")
|
30 |
-
# try:
|
31 |
-
# pipe.load_lora_weights(model_path)
|
32 |
-
# print(f"Successfully downloaded model: {model_name}")
|
33 |
-
# except Exception as e:
|
34 |
-
# print(f"Failed to download model: {model_name}. Error: {e}")
|
35 |
-
|
36 |
-
# # Iterate through the models and download each one
|
37 |
-
# for model_name, model_path in lora_models.items():
|
38 |
-
# download_model(model_name, model_path)
|
39 |
-
|
40 |
-
# lora_models["None"] = None
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
# FIXED_DIMENSION = 1024
|
50 |
|
51 |
-
|
52 |
-
# original_aspect_ratio = original_width / original_height
|
53 |
-
|
54 |
-
# # Determine which dimension to fix
|
55 |
-
# if original_aspect_ratio > 1: # Wider than tall
|
56 |
-
# width = FIXED_DIMENSION
|
57 |
-
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
58 |
-
# else: # Taller than wide
|
59 |
-
# height = FIXED_DIMENSION
|
60 |
-
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
61 |
-
|
62 |
-
# # Ensure dimensions are multiples of 8
|
63 |
-
# width = (width // 8) * 8
|
64 |
-
# height = (height // 8) * 8
|
65 |
-
|
66 |
-
# # Enforce aspect ratio limits
|
67 |
-
# calculated_aspect_ratio = width / height
|
68 |
-
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
69 |
-
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
70 |
-
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
71 |
-
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
72 |
-
|
73 |
-
# # Ensure width and height remain above the minimum dimensions
|
74 |
-
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
75 |
-
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
76 |
-
|
77 |
-
# return width, height
|
78 |
|
79 |
@spaces.GPU(durations=300)
|
80 |
-
|
81 |
-
def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
82 |
# pipe.enable_xformers_memory_efficient_attention()
|
83 |
-
gr.Info("Infering")
|
84 |
-
|
85 |
-
# if lora_model != "None":
|
86 |
-
# pipe.load_lora_weights(lora_models[lora_model])
|
87 |
-
# pipe.enable_lora()
|
88 |
|
89 |
-
|
|
|
|
|
90 |
|
91 |
image = edit_images["background"]
|
92 |
-
mask = edit_images["layers"][0]
|
93 |
-
|
94 |
-
if not image:
|
95 |
-
gr.Info("Please upload an image.")
|
96 |
-
return None, None
|
97 |
-
|
98 |
# width, height = calculate_optimal_dimensions(image)
|
|
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, MAX_SEED)
|
101 |
|
102 |
# controlImage = processor(image)
|
103 |
-
gr.Info("generating image")
|
104 |
image = pipe(
|
105 |
# mask_image_latent=vae.encode(controlImage),
|
106 |
prompt=prompt,
|
@@ -110,10 +61,8 @@ def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=
|
|
110 |
height=height,
|
111 |
width=width,
|
112 |
guidance_scale=guidance_scale,
|
113 |
-
# strength=strength,
|
114 |
num_inference_steps=num_inference_steps,
|
115 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
116 |
-
# generator=torch.Generator().manual_seed(seed),
|
117 |
# lora_scale=0.75 // not supported in this version
|
118 |
).images[0]
|
119 |
|
@@ -123,55 +72,6 @@ def infer(edit_images, prompt, width, height, strength, seed=42, randomize_seed=
|
|
123 |
return output_image_jpg, seed
|
124 |
# return image, seed
|
125 |
|
126 |
-
def download_image(image):
|
127 |
-
if isinstance(image, np.ndarray):
|
128 |
-
image = Image.fromarray(image)
|
129 |
-
image.save("output.png", "PNG")
|
130 |
-
return "output.png"
|
131 |
-
|
132 |
-
def save_details(result, edit_image, prompt, strength, seed, guidance_scale, num_inference_steps):
|
133 |
-
image = edit_image["background"]
|
134 |
-
mask = edit_image["layers"][0]
|
135 |
-
|
136 |
-
if isinstance(result, np.ndarray):
|
137 |
-
result = Image.fromarray(result)
|
138 |
-
if isinstance(image, np.ndarray):
|
139 |
-
image = Image.fromarray(image)
|
140 |
-
if isinstance(mask, np.ndarray):
|
141 |
-
mask = Image.fromarray(mask)
|
142 |
-
|
143 |
-
result.save("saved_result.png", "PNG")
|
144 |
-
image.save("saved_image.png", "PNG")
|
145 |
-
mask.save("saved_mask.png", "PNG")
|
146 |
-
|
147 |
-
details = {
|
148 |
-
"prompt": prompt,
|
149 |
-
"strength": strength,
|
150 |
-
"seed": seed,
|
151 |
-
"guidance_scale": guidance_scale,
|
152 |
-
"num_inference_steps": num_inference_steps
|
153 |
-
}
|
154 |
-
|
155 |
-
with open("details.json", "w") as f:
|
156 |
-
json.dump(details, f)
|
157 |
-
|
158 |
-
# Create a ZIP file
|
159 |
-
with zipfile.ZipFile("output.zip", "w") as zipf:
|
160 |
-
zipf.write("saved_result.png")
|
161 |
-
zipf.write("saved_image.png")
|
162 |
-
zipf.write("saved_mask.png")
|
163 |
-
zipf.write("details.json")
|
164 |
-
|
165 |
-
return "output.zip"
|
166 |
-
|
167 |
-
def set_image_as_inpaint(image):
|
168 |
-
return image
|
169 |
-
|
170 |
-
# def generate_mask(image, click_x, click_y):
|
171 |
-
# text_prompt = "face"
|
172 |
-
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
|
173 |
-
# return mask
|
174 |
-
|
175 |
examples = [
|
176 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
177 |
# "a tiny astronaut hatching from an egg on the moon",
|
@@ -210,11 +110,11 @@ with gr.Blocks(css=css) as demo:
|
|
210 |
container=False,
|
211 |
)
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
|
219 |
run_button = gr.Button("Run")
|
220 |
|
@@ -250,16 +150,6 @@ with gr.Blocks(css=css) as demo:
|
|
250 |
value=28,
|
251 |
)
|
252 |
|
253 |
-
with gr.Row():
|
254 |
-
|
255 |
-
strength = gr.Slider(
|
256 |
-
label="Strength",
|
257 |
-
minimum=0,
|
258 |
-
maximum=1,
|
259 |
-
step=0.01,
|
260 |
-
value=0.85,
|
261 |
-
)
|
262 |
-
|
263 |
with gr.Row():
|
264 |
|
265 |
width = gr.Slider(
|
@@ -281,38 +171,10 @@ with gr.Blocks(css=css) as demo:
|
|
281 |
gr.on(
|
282 |
triggers=[run_button.click, prompt.submit],
|
283 |
fn = infer,
|
284 |
-
inputs = [edit_image, prompt, width, height,
|
285 |
outputs = [result, seed]
|
286 |
)
|
287 |
|
288 |
-
download_button = gr.Button("Download Image as PNG")
|
289 |
-
set_inpaint_button = gr.Button("Set Image as Inpaint")
|
290 |
-
save_button = gr.Button("Save Details")
|
291 |
-
|
292 |
-
download_button.click(
|
293 |
-
fn=download_image,
|
294 |
-
inputs=[result],
|
295 |
-
outputs=gr.File(label="Download Image")
|
296 |
-
)
|
297 |
-
|
298 |
-
set_inpaint_button.click(
|
299 |
-
fn=set_image_as_inpaint,
|
300 |
-
inputs=[result],
|
301 |
-
outputs=[edit_image]
|
302 |
-
)
|
303 |
-
|
304 |
-
save_button.click(
|
305 |
-
fn=save_details,
|
306 |
-
inputs=[result, edit_image, prompt, strength, seed, guidance_scale, num_inference_steps],
|
307 |
-
outputs=gr.File(label="Download/Save Status")
|
308 |
-
)
|
309 |
-
|
310 |
-
# edit_image.select(
|
311 |
-
# fn=generate_mask,
|
312 |
-
# inputs=[edit_image, gr.Number(), gr.Number()],
|
313 |
-
# outputs=[edit_image]
|
314 |
-
# )
|
315 |
-
|
316 |
# demo.launch()
|
317 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
318 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
@@ -325,4 +187,4 @@ def authenticate(username, password):
|
|
325 |
return False
|
326 |
# Launch the app with authentication
|
327 |
|
328 |
-
demo.launch(
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import os
|
4 |
+
import spaces
|
5 |
import random
|
6 |
import json
|
7 |
+
# from image_gen_aux import DepthPreprocessor
|
8 |
from PIL import Image
|
9 |
import torch
|
10 |
from torchvision import transforms
|
|
|
11 |
|
12 |
from diffusers import FluxFillPipeline, AutoencoderKL
|
13 |
from PIL import Image
|
14 |
+
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
MAX_IMAGE_SIZE = 2048
|
18 |
|
|
|
|
|
|
|
19 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
20 |
+
# pipe.load_lora_weights("Himanshu806/testLora")
|
21 |
+
# pipe.enable_lora()
|
22 |
|
23 |
+
with open("lora_models.json", "r") as f:
|
24 |
+
lora_models = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def download_model(model_name, model_path):
|
27 |
+
print(f"Downloading model: {model_name} from {model_path}")
|
28 |
+
try:
|
29 |
+
pipe.load_lora_weights(model_path)
|
30 |
+
print(f"Successfully downloaded model: {model_name}")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Failed to download model: {model_name}. Error: {e}")
|
33 |
|
34 |
+
# Iterate through the models and download each one
|
35 |
+
for model_name, model_path in lora_models.items():
|
36 |
+
download_model(model_name, model_path)
|
|
|
37 |
|
38 |
+
lora_models["None"] = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
@spaces.GPU(durations=300)
|
41 |
+
def infer(edit_images, prompt, width, height, lora_model, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
|
42 |
# pipe.enable_xformers_memory_efficient_attention()
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
if lora_model != "None":
|
45 |
+
pipe.load_lora_weights(lora_models[lora_model])
|
46 |
+
pipe.enable_lora()
|
47 |
|
48 |
image = edit_images["background"]
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
# width, height = calculate_optimal_dimensions(image)
|
50 |
+
mask = edit_images["layers"][0]
|
51 |
if randomize_seed:
|
52 |
seed = random.randint(0, MAX_SEED)
|
53 |
|
54 |
# controlImage = processor(image)
|
|
|
55 |
image = pipe(
|
56 |
# mask_image_latent=vae.encode(controlImage),
|
57 |
prompt=prompt,
|
|
|
61 |
height=height,
|
62 |
width=width,
|
63 |
guidance_scale=guidance_scale,
|
|
|
64 |
num_inference_steps=num_inference_steps,
|
65 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
|
|
66 |
# lora_scale=0.75 // not supported in this version
|
67 |
).images[0]
|
68 |
|
|
|
72 |
return output_image_jpg, seed
|
73 |
# return image, seed
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
examples = [
|
76 |
"photography of a young woman, accent lighting, (front view:1.4), "
|
77 |
# "a tiny astronaut hatching from an egg on the moon",
|
|
|
110 |
container=False,
|
111 |
)
|
112 |
|
113 |
+
lora_model = gr.Dropdown(
|
114 |
+
label="Select LoRA Model",
|
115 |
+
choices=list(lora_models.keys()),
|
116 |
+
value="None",
|
117 |
+
)
|
118 |
|
119 |
run_button = gr.Button("Run")
|
120 |
|
|
|
150 |
value=28,
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Row():
|
154 |
|
155 |
width = gr.Slider(
|
|
|
171 |
gr.on(
|
172 |
triggers=[run_button.click, prompt.submit],
|
173 |
fn = infer,
|
174 |
+
inputs = [edit_image, prompt, width, height, lora_model, seed, randomize_seed, guidance_scale, num_inference_steps],
|
175 |
outputs = [result, seed]
|
176 |
)
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
# demo.launch()
|
179 |
PASSWORD = os.getenv("GRADIO_PASSWORD")
|
180 |
USERNAME = os.getenv("GRADIO_USERNAME")
|
|
|
187 |
return False
|
188 |
# Launch the app with authentication
|
189 |
|
190 |
+
demo.launch(auth=authenticate)
|
lora_models.json
CHANGED
@@ -1,9 +1,4 @@
|
|
1 |
{
|
2 |
-
"RahulFineTuned
|
3 |
-
"
|
4 |
-
"KodaRealistic (flmft style)": "alvdansen/flux-koda",
|
5 |
-
"superRealism (Super Realism)": "strangerzonehf/Flux-Super-Realism-LoRA",
|
6 |
-
"ThirdMarch blue (blueThirdMarchDress)": "Himanshu806/bluethirdmarchdress",
|
7 |
-
"manosouthf (manoSouthf)": "Himanshu806/manosouthf",
|
8 |
-
"greenDress (onlyGreenDress)": "Himanshu806/onlygreendress"
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"RahulFineTuned": "Himanshu806/testLora",
|
3 |
+
"KodaRealistic": "alvdansen/flux-koda"
|
|
|
|
|
|
|
|
|
|
|
4 |
}
|
readme.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Inpainting
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Inpainting
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
---
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
git+https://github.com/asomoza/image_gen_aux.git
|
2 |
-
git+https://github.com/huggingface/diffusers
|
3 |
transformers
|
4 |
accelerate
|
5 |
safetensors
|
@@ -8,6 +8,3 @@ peft
|
|
8 |
xformers
|
9 |
torchvision
|
10 |
torch
|
11 |
-
opencv-python
|
12 |
-
segment-geospatial
|
13 |
-
groundingdino-py
|
|
|
1 |
git+https://github.com/asomoza/image_gen_aux.git
|
2 |
+
git+https://github.com/huggingface/diffusers.git
|
3 |
transformers
|
4 |
accelerate
|
5 |
safetensors
|
|
|
8 |
xformers
|
9 |
torchvision
|
10 |
torch
|
|
|
|
|
|