Spaces:
Build error
Build error
File size: 6,676 Bytes
b5a32d7 0e585b3 b5a32d7 706d4aa b5a32d7 55622e4 b5a32d7 09f7073 b5a32d7 fbcf999 b5a32d7 1994aa6 b5a32d7 ce587d9 ba96e19 b5a32d7 e627cef b5a32d7 7554ebb b5a32d7 41f24c3 b5a32d7 1259c4d b5a32d7 aeefab9 5ea1f97 aeefab9 5ea1f97 41f24c3 5ea1f97 41f24c3 b5a32d7 c0bb3f4 b5a32d7 a83d1b8 7554ebb b5a32d7 95ef2dc b5a32d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from dataclasses import dataclass
from typing import Literal
import streamlit as st
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
import streamlit.components.v1 as components
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from dotenv import load_dotenv
import os
import openai
import time
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.environ['my_secret']
@dataclass
class Message:
"""Class for keeping track of a chat message."""
origin: Literal["human", "ai"]
message: str
def load_css():
with open("styles.css", "r") as f:
css = f"<style>{f.read()}</style>"
st.markdown(css, unsafe_allow_html=True)
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = [Message("ai", "μλ
νμΈμ, μ΄λ»κ² λμλ릴κΉμ?")]
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if 'chain' not in st.session_state:
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
loader = PyPDFLoader("/home/user/app/docs.pdf")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(texts, embeddings)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
system_template="""You act like a successful teacher. Talk to students about the career path of a teacher.
Never reveal that it is an AI. Use the following pieces of context to answer the users question shortly.
Given the following summaries of a long document and a question, create a final answer.
If someone talks about something that isn't job-related, just say "I don't know" and don't try to make up an answer.
If you don't know the answer, just say that "I don't know", don't try to make up an answer.
----------------
{summaries}
You MUST answer in Korean and in Markdown format"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
st.session_state['chain'] = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs,
reduce_k_below_max_tokens=True,
verbose=True,
)
def generate_response(user_input):
result = st.session_state['chain'](user_input)
bot_message = result['answer']
return bot_message
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
llm_response = generate_response(human_prompt)
st.session_state.history.append(
Message("human", human_prompt)
)
st.session_state.history.append(
Message("ai", llm_response)
)
st.session_state.token_count += cb.total_tokens
load_css()
initialize_session_state()
st.title("κ΅μ¬μ μ§λ‘μλ΄μ ν΄λ³΄μΈμ, \n μ€μ μΈν°λ·°λ₯Ό κΈ°λ°μΌλ‘ ν©λλ€. π€")
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
credit_card_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history[:-1]:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/{
'/512/3058/3058838.png' if chat.origin == 'ai'
else '512/1177/1177568.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
​{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
if st.session_state.history:
last_chat = st.session_state.history[-1]
div_start = f"""
<div class="chat-row
{'' if last_chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/{
'/512/3058/3058838.png' if last_chat.origin == 'ai'
else '512/1177/1177568.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if last_chat.origin == 'ai' else 'human-bubble'}">
​"""
div_end = """
</div>
</div>
"""
new_placeholder = st.empty()
for j in range(len(last_chat.message)):
new_placeholder.markdown(div_start + last_chat.message[:j+1] + div_end, unsafe_allow_html=True)
time.sleep(0.05)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
value="κ΅μ¬κ° λλ €λ©΄ 무μμ ν΄μΌ νλμ?",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
# credit_card_placeholder.caption(f"""
# Used {st.session_state.token_count} tokens \n
# Debug Langchain conversation:
# {st.session_state.chain.memory.buffer}
# """)
components.html("""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)
|