Spaces:
Running
on
Zero
Running
on
Zero
# Anime2sketch | |
# https://github.com/Mukosame/Anime2Sketch | |
''' | |
MIT License | |
Copyright (c) 2022 Caroline Chan | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
''' | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import functools | |
import os | |
import cv2 | |
from einops import rearrange | |
class UnetGenerator(nn.Module): | |
"""Create a Unet-based generator""" | |
def __init__( | |
self, | |
input_nc, | |
output_nc, | |
num_downs, | |
ngf=64, | |
norm_layer=nn.BatchNorm2d, | |
use_dropout=False, | |
): | |
"""Construct a Unet generator | |
Parameters: | |
input_nc (int) -- the number of channels in input images | |
output_nc (int) -- the number of channels in output images | |
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, | |
image of size 128x128 will become of size 1x1 # at the bottleneck | |
ngf (int) -- the number of filters in the last conv layer | |
norm_layer -- normalization layer | |
We construct the U-Net from the innermost layer to the outermost layer. | |
It is a recursive process. | |
""" | |
super(UnetGenerator, self).__init__() | |
# construct unet structure | |
unet_block = UnetSkipConnectionBlock( | |
ngf * 8, | |
ngf * 8, | |
input_nc=None, | |
submodule=None, | |
norm_layer=norm_layer, | |
innermost=True, | |
) # add the innermost layer | |
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters | |
unet_block = UnetSkipConnectionBlock( | |
ngf * 8, | |
ngf * 8, | |
input_nc=None, | |
submodule=unet_block, | |
norm_layer=norm_layer, | |
use_dropout=use_dropout, | |
) | |
# gradually reduce the number of filters from ngf * 8 to ngf | |
unet_block = UnetSkipConnectionBlock( | |
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer | |
) | |
unet_block = UnetSkipConnectionBlock( | |
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer | |
) | |
unet_block = UnetSkipConnectionBlock( | |
ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer | |
) | |
self.model = UnetSkipConnectionBlock( | |
output_nc, | |
ngf, | |
input_nc=input_nc, | |
submodule=unet_block, | |
outermost=True, | |
norm_layer=norm_layer, | |
) # add the outermost layer | |
def forward(self, input): | |
"""Standard forward""" | |
return self.model(input) | |
class UnetSkipConnectionBlock(nn.Module): | |
"""Defines the Unet submodule with skip connection. | |
X -------------------identity---------------------- | |
|-- downsampling -- |submodule| -- upsampling --| | |
""" | |
def __init__( | |
self, | |
outer_nc, | |
inner_nc, | |
input_nc=None, | |
submodule=None, | |
outermost=False, | |
innermost=False, | |
norm_layer=nn.BatchNorm2d, | |
use_dropout=False, | |
): | |
"""Construct a Unet submodule with skip connections. | |
Parameters: | |
outer_nc (int) -- the number of filters in the outer conv layer | |
inner_nc (int) -- the number of filters in the inner conv layer | |
input_nc (int) -- the number of channels in input images/features | |
submodule (UnetSkipConnectionBlock) -- previously defined submodules | |
outermost (bool) -- if this module is the outermost module | |
innermost (bool) -- if this module is the innermost module | |
norm_layer -- normalization layer | |
use_dropout (bool) -- if use dropout layers. | |
""" | |
super(UnetSkipConnectionBlock, self).__init__() | |
self.outermost = outermost | |
if type(norm_layer) == functools.partial: | |
use_bias = norm_layer.func == nn.InstanceNorm2d | |
else: | |
use_bias = norm_layer == nn.InstanceNorm2d | |
if input_nc is None: | |
input_nc = outer_nc | |
downconv = nn.Conv2d( | |
input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias | |
) | |
downrelu = nn.LeakyReLU(0.2, True) | |
downnorm = norm_layer(inner_nc) | |
uprelu = nn.ReLU(True) | |
upnorm = norm_layer(outer_nc) | |
if outermost: | |
upconv = nn.ConvTranspose2d( | |
inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1 | |
) | |
down = [downconv] | |
up = [uprelu, upconv, nn.Tanh()] | |
model = down + [submodule] + up | |
elif innermost: | |
upconv = nn.ConvTranspose2d( | |
inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias | |
) | |
down = [downrelu, downconv] | |
up = [uprelu, upconv, upnorm] | |
model = down + up | |
else: | |
upconv = nn.ConvTranspose2d( | |
inner_nc * 2, | |
outer_nc, | |
kernel_size=4, | |
stride=2, | |
padding=1, | |
bias=use_bias, | |
) | |
down = [downrelu, downconv, downnorm] | |
up = [uprelu, upconv, upnorm] | |
if use_dropout: | |
model = down + [submodule] + up + [nn.Dropout(0.5)] | |
else: | |
model = down + [submodule] + up | |
self.model = nn.Sequential(*model) | |
def forward(self, x): | |
if self.outermost: | |
return self.model(x) | |
else: # add skip connections | |
return torch.cat([x, self.model(x)], 1) | |
class LineartAnimeDetector: | |
def __init__(self, model_path="hf_download"): | |
remote_model_path = ( | |
"https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth" | |
) | |
modelpath = os.path.join(model_path, "netG.pth") | |
if not os.path.exists(modelpath): | |
from .utils import load_file_from_url | |
load_file_from_url(remote_model_path, model_dir=model_path) | |
norm_layer = functools.partial( | |
nn.InstanceNorm2d, affine=False, track_running_stats=False | |
) | |
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False) | |
ckpt = torch.load(modelpath) | |
for key in list(ckpt.keys()): | |
if "module." in key: | |
ckpt[key.replace("module.", "")] = ckpt[key] | |
del ckpt[key] | |
net.load_state_dict(ckpt) | |
net = net.cuda() | |
net.eval() | |
self.model = net | |
def __call__(self, input_image): | |
H, W, C = input_image.shape | |
Hn = 256 * int(np.ceil(float(H) / 256.0)) | |
Wn = 256 * int(np.ceil(float(W) / 256.0)) | |
img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC) | |
with torch.no_grad(): | |
image_feed = torch.from_numpy(img).float().cuda() | |
image_feed = image_feed / 127.5 - 1.0 | |
image_feed = rearrange(image_feed, "h w c -> 1 c h w") | |
line = self.model(image_feed)[0, 0] * 127.5 + 127.5 | |
line = line.cpu().numpy() | |
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC) | |
line = line.clip(0, 255).astype(np.uint8) | |
return line | |