File size: 7,875 Bytes
d3a157d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
print("start1")
import os
import sys
import subprocess
import gradio as gr
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
print("start2")


# Check if already installed to avoid reinstalling
try:
    import llama_cpp
    print("llama_cpp already installed.")
except ImportError:
    print("Installing llama_cpp from wheel...")
    subprocess.check_call([
    sys.executable, "-m", "pip", "install",
    "llama-cpp-python", "--no-binary", ":all:", "--force-reinstall"
])


from llama_cpp import Llama
print("start3")
import warnings
warnings.filterwarnings("ignore")

print("Start")
import subprocess

subprocess.run([
    "huggingface-cli", "download",
    "TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
    "mistral-7b-instruct-v0.1.Q2_K.gguf",
    "--local-dir", "./models",
    "--local-dir-use-symlinks", "False"
], check=True)

# ------------------------------
# Device and Embedding Setup (CPU optimized)
# ------------------------------
modelPath = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {"device": "cpu"}  # Force CPU usage
encode_kwargs = {"normalize_embedding": False}

embeddings = HuggingFaceEmbeddings(
    model_name=modelPath,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)

# ------------------------------
# Load Mistral GGUF via llama.cpp (CPU optimized)
# ------------------------------
llm_cpp = Llama(
    model_path="./models/mistral-7b-instruct-v0.1.Q2_K.gguf",
    n_ctx=2048,
    n_threads=4,  # Adjust based on your CPU cores
    n_gpu_layers=0,  # Force CPU-only
    temperature=0.7,
    top_p=0.9,
    repeat_penalty=1.1
)

# ------------------------------
# LangChain-compatible wrapper
# ------------------------------
def mistral_llm(prompt):
    output = llm_cpp(
        prompt,
        max_tokens=512,  # Reduced for CPU performance
        stop=["</s>", "[INST]", "[/INST]"]
    )
    return output["choices"][0]["text"].strip()

# ------------------------------
# Prompt Template (unchanged)
# ------------------------------
def get_qa_prompt():
    template = """<s>[INST] \
You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context.

Guidelines:
- Respond in a natural, conversational tone
- Be detailed but concise
- Use paragraphs and bullet points when appropriate
- If you don't know, say so
- Maintain a friendly and professional demeanor

Conversation History:
{chat_history}

Relevant Context:
{context}

Current Question: {question} 

Provide a helpful response: [/INST]"""
    return PromptTemplate(
        template=template,
        input_variables=["context", "question", "chat_history"]
    )

# ------------------------------
# PDF and Chat Logic (optimized for CPU)
# ------------------------------
def pdf_text(pdf_docs):
    text = ""
    for doc in pdf_docs:
        reader = PdfReader(doc)
        for page in reader.pages:
            page_text = page.extract_text()
            if page_text:
                text += page_text + "\n"
    return text

def get_chunks(text):
    splitter = RecursiveCharacterTextSplitter(
        chunk_size=800,  # Smaller chunks for CPU
        chunk_overlap=100,
        length_function=len
    )
    chunks = splitter.split_text(text)
    return [Document(page_content=chunk) for chunk in chunks]

def get_vectorstore(documents):
    db = FAISS.from_documents(documents, embedding=embeddings)
    db.save_local("faiss_index")

def format_chat_history(history):
    return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in history[-2:]])  # Shorter history

def handle_pdf_upload(pdf_files):
    if not pdf_files:
        return "โš ๏ธ Upload at least one PDF"
    try:
        text = pdf_text(pdf_files)
        if not text.strip():
            return "โš ๏ธ Could not extract text"
        chunks = get_chunks(text)
        get_vectorstore(chunks)
        return f"โœ… Processed {len(pdf_files)} PDF(s) with {len(chunks)} chunks"
    except Exception as e:
        return f"โŒ Error: {str(e)}"

def user_query(msg, chat_history):
    if not os.path.exists("faiss_index"):
        chat_history.append((msg, "Please upload PDF documents first."))
        return "", chat_history

    try:
        db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
        retriever = db.as_retriever(search_kwargs={"k": 2})  # Fewer documents for CPU
        docs = retriever.get_relevant_documents(msg)
        context = "\n\n".join([d.page_content for d in docs][:2])  # Limit context

        prompt = get_qa_prompt()
        final_prompt = prompt.format(
            context=context[:1500],  # Further limit context size
            question=msg,
            chat_history=format_chat_history(chat_history)
        )

        response = mistral_llm(final_prompt)
        chat_history.append((msg, response))
        return "", chat_history
    except Exception as e:
        error_msg = f"Sorry, I encountered an error: {str(e)}"
        chat_history.append((msg, error_msg))
        return "", chat_history

# ------------------------------
# Gradio Interface (your exact requested format)
# ------------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo:
    with gr.Row():
        gr.Markdown("""
        # ๐Ÿ“š PDF Chat Assistant
        ### Have natural conversations with your documents ((Note: This Space runs on CPU, so responses may take a few mins.))
        """)
    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            gr.Markdown("### Document Upload")
            pdf_input = gr.File(
                file_types=[".pdf"],
                file_count="multiple",
                label="Upload PDFs",
                height=100
            )
            upload_btn = gr.Button("Process Documents", variant="primary")
            status_box = gr.Textbox(label="Status", interactive=False)
            gr.Markdown("""
            **Instructions:**
            1. Upload PDF documents
            2. Click Process Documents
            3. Start chatting in the right panel
            """)

        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=600,
                bubble_full_width=False,
                avatar_images=(
                    "user.png", 
                    "bot.png"
                )
            )
            
            with gr.Row():
                message = gr.Textbox(
                    placeholder="Type your question about the documents...",
                    show_label=False,
                    container=False,
                    scale=7,
                    autofocus=True
                )
                submit_btn = gr.Button("Send", variant="primary", scale=1)
            
            with gr.Row():
                clear_chat = gr.Button("๐Ÿงน Clear Conversation")
                examples = gr.Examples(
                    examples=[
                        "Summarize the key points from the documents",
                        "What are the main findings?",
                        "Explain this in simpler terms"
                    ],
                    inputs=message,
                    label="Example Questions"
                )

    upload_btn.click(handle_pdf_upload, inputs=pdf_input, outputs=status_box)
    submit_btn.click(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
    message.submit(user_query, inputs=[message, chatbot], outputs=[message, chatbot])
    clear_chat.click(lambda: [], None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()  # Disable sharing for local CPU use