File size: 7,875 Bytes
d3a157d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
print("start1") import os import sys import subprocess import gradio as gr from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.schema import Document print("start2") # Check if already installed to avoid reinstalling try: import llama_cpp print("llama_cpp already installed.") except ImportError: print("Installing llama_cpp from wheel...") subprocess.check_call([ sys.executable, "-m", "pip", "install", "llama-cpp-python", "--no-binary", ":all:", "--force-reinstall" ]) from llama_cpp import Llama print("start3") import warnings warnings.filterwarnings("ignore") print("Start") import subprocess subprocess.run([ "huggingface-cli", "download", "TheBloke/Mistral-7B-Instruct-v0.1-GGUF", "mistral-7b-instruct-v0.1.Q2_K.gguf", "--local-dir", "./models", "--local-dir-use-symlinks", "False" ], check=True) # ------------------------------ # Device and Embedding Setup (CPU optimized) # ------------------------------ modelPath = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {"device": "cpu"} # Force CPU usage encode_kwargs = {"normalize_embedding": False} embeddings = HuggingFaceEmbeddings( model_name=modelPath, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) # ------------------------------ # Load Mistral GGUF via llama.cpp (CPU optimized) # ------------------------------ llm_cpp = Llama( model_path="./models/mistral-7b-instruct-v0.1.Q2_K.gguf", n_ctx=2048, n_threads=4, # Adjust based on your CPU cores n_gpu_layers=0, # Force CPU-only temperature=0.7, top_p=0.9, repeat_penalty=1.1 ) # ------------------------------ # LangChain-compatible wrapper # ------------------------------ def mistral_llm(prompt): output = llm_cpp( prompt, max_tokens=512, # Reduced for CPU performance stop=["</s>", "[INST]", "[/INST]"] ) return output["choices"][0]["text"].strip() # ------------------------------ # Prompt Template (unchanged) # ------------------------------ def get_qa_prompt(): template = """<s>[INST] \ You are a helpful, knowledgeable AI assistant. Answer the user's question based on the provided context. Guidelines: - Respond in a natural, conversational tone - Be detailed but concise - Use paragraphs and bullet points when appropriate - If you don't know, say so - Maintain a friendly and professional demeanor Conversation History: {chat_history} Relevant Context: {context} Current Question: {question} Provide a helpful response: [/INST]""" return PromptTemplate( template=template, input_variables=["context", "question", "chat_history"] ) # ------------------------------ # PDF and Chat Logic (optimized for CPU) # ------------------------------ def pdf_text(pdf_docs): text = "" for doc in pdf_docs: reader = PdfReader(doc) for page in reader.pages: page_text = page.extract_text() if page_text: text += page_text + "\n" return text def get_chunks(text): splitter = RecursiveCharacterTextSplitter( chunk_size=800, # Smaller chunks for CPU chunk_overlap=100, length_function=len ) chunks = splitter.split_text(text) return [Document(page_content=chunk) for chunk in chunks] def get_vectorstore(documents): db = FAISS.from_documents(documents, embedding=embeddings) db.save_local("faiss_index") def format_chat_history(history): return "\n".join([f"User: {q}\nAssistant: {a}" for q, a in history[-2:]]) # Shorter history def handle_pdf_upload(pdf_files): if not pdf_files: return "โ ๏ธ Upload at least one PDF" try: text = pdf_text(pdf_files) if not text.strip(): return "โ ๏ธ Could not extract text" chunks = get_chunks(text) get_vectorstore(chunks) return f"โ Processed {len(pdf_files)} PDF(s) with {len(chunks)} chunks" except Exception as e: return f"โ Error: {str(e)}" def user_query(msg, chat_history): if not os.path.exists("faiss_index"): chat_history.append((msg, "Please upload PDF documents first.")) return "", chat_history try: db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) retriever = db.as_retriever(search_kwargs={"k": 2}) # Fewer documents for CPU docs = retriever.get_relevant_documents(msg) context = "\n\n".join([d.page_content for d in docs][:2]) # Limit context prompt = get_qa_prompt() final_prompt = prompt.format( context=context[:1500], # Further limit context size question=msg, chat_history=format_chat_history(chat_history) ) response = mistral_llm(final_prompt) chat_history.append((msg, response)) return "", chat_history except Exception as e: error_msg = f"Sorry, I encountered an error: {str(e)}" chat_history.append((msg, error_msg)) return "", chat_history # ------------------------------ # Gradio Interface (your exact requested format) # ------------------------------ with gr.Blocks(theme=gr.themes.Soft(), title="PDF Chat Assistant") as demo: with gr.Row(): gr.Markdown(""" # ๐ PDF Chat Assistant ### Have natural conversations with your documents ((Note: This Space runs on CPU, so responses may take a few mins.)) """) with gr.Row(): with gr.Column(scale=1, min_width=300): gr.Markdown("### Document Upload") pdf_input = gr.File( file_types=[".pdf"], file_count="multiple", label="Upload PDFs", height=100 ) upload_btn = gr.Button("Process Documents", variant="primary") status_box = gr.Textbox(label="Status", interactive=False) gr.Markdown(""" **Instructions:** 1. Upload PDF documents 2. Click Process Documents 3. Start chatting in the right panel """) with gr.Column(scale=2): chatbot = gr.Chatbot( height=600, bubble_full_width=False, avatar_images=( "user.png", "bot.png" ) ) with gr.Row(): message = gr.Textbox( placeholder="Type your question about the documents...", show_label=False, container=False, scale=7, autofocus=True ) submit_btn = gr.Button("Send", variant="primary", scale=1) with gr.Row(): clear_chat = gr.Button("๐งน Clear Conversation") examples = gr.Examples( examples=[ "Summarize the key points from the documents", "What are the main findings?", "Explain this in simpler terms" ], inputs=message, label="Example Questions" ) upload_btn.click(handle_pdf_upload, inputs=pdf_input, outputs=status_box) submit_btn.click(user_query, inputs=[message, chatbot], outputs=[message, chatbot]) message.submit(user_query, inputs=[message, chatbot], outputs=[message, chatbot]) clear_chat.click(lambda: [], None, chatbot, queue=False) if __name__ == "__main__": demo.launch() # Disable sharing for local CPU use |