Update app.py
Browse files
app.py
CHANGED
|
@@ -8,34 +8,30 @@ import pytesseract
|
|
| 8 |
from scipy.spatial import distance as dist
|
| 9 |
|
| 10 |
# ==============================================================================
|
| 11 |
-
# App Configuration
|
| 12 |
# ==============================================================================
|
| 13 |
-
|
| 14 |
st.set_page_config(
|
| 15 |
page_title="Document AI Toolkit",
|
| 16 |
page_icon="π€",
|
| 17 |
layout="wide"
|
| 18 |
)
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
| 21 |
@st.cache_resource
|
| 22 |
def load_model():
|
| 23 |
"""Loads the Table Transformer model and processor."""
|
| 24 |
-
|
| 25 |
-
processor = DetrImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 26 |
-
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
| 27 |
-
return processor, model
|
| 28 |
|
| 29 |
-
|
| 30 |
|
| 31 |
# ==============================================================================
|
| 32 |
-
# Core Image Processing Functions
|
| 33 |
# ==============================================================================
|
| 34 |
-
|
| 35 |
def order_points(pts):
|
| 36 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
| 37 |
-
leftMost = xSorted[:2, :]
|
| 38 |
-
rightMost = xSorted[2:, :]
|
| 39 |
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
| 40 |
(tl, bl) = leftMost
|
| 41 |
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
|
|
@@ -53,8 +49,7 @@ def perspective_transform(image, pts):
|
|
| 53 |
maxHeight = max(int(heightA), int(heightB))
|
| 54 |
dst = np.array([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")
|
| 55 |
M = cv2.getPerspectiveTransform(rect, dst)
|
| 56 |
-
|
| 57 |
-
return warped
|
| 58 |
|
| 59 |
def find_and_straighten_document(image):
|
| 60 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
@@ -63,127 +58,124 @@ def find_and_straighten_document(image):
|
|
| 63 |
if not contours: return None
|
| 64 |
page_contour = max(contours, key=cv2.contourArea)
|
| 65 |
if cv2.contourArea(page_contour) < (image.shape[0] * image.shape[1] * 0.1): return None
|
| 66 |
-
|
| 67 |
-
box = cv2.boxPoints(rect)
|
| 68 |
return perspective_transform(image, box)
|
| 69 |
|
| 70 |
def correct_orientation(image):
|
|
|
|
| 71 |
try:
|
| 72 |
-
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT)
|
| 73 |
rotation = osd['rotate']
|
| 74 |
-
if rotation
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def extract_and_draw_table_structure(image_bgr):
|
|
|
|
| 87 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 88 |
inputs = processor(images=image_pil, return_tensors="pt")
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model(**inputs)
|
| 91 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 92 |
-
results = processor.post_process_object_detection(outputs, threshold=0.
|
|
|
|
| 93 |
img_with_boxes = image_bgr.copy()
|
| 94 |
-
colors = {"table row": (0, 255, 0), "table column": (
|
| 95 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 96 |
class_name = model.config.id2label[label.item()]
|
| 97 |
if class_name in colors:
|
| 98 |
xmin, ymin, xmax, ymax = [int(val) for val in box.tolist()]
|
| 99 |
-
|
| 100 |
-
cv2.rectangle(img_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
| 101 |
return img_with_boxes
|
| 102 |
|
| 103 |
# ==============================================================================
|
| 104 |
-
# UI
|
| 105 |
# ==============================================================================
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# --- Main App UI ---
|
| 121 |
-
initialize_state()
|
| 122 |
-
|
| 123 |
-
st.title("π€ Document AI Toolkit")
|
| 124 |
-
st.markdown("---")
|
| 125 |
-
|
| 126 |
-
# Use columns for a centered and constrained layout
|
| 127 |
-
left_col, main_col, right_col = st.columns([1, 4, 1])
|
| 128 |
-
|
| 129 |
-
with main_col:
|
| 130 |
-
# --- STAGE 1: UPLOAD ---
|
| 131 |
if st.session_state.stage == "upload":
|
| 132 |
-
st.header("Step 1: Upload
|
| 133 |
-
uploaded_file = st.file_uploader("
|
| 134 |
-
|
| 135 |
if uploaded_file:
|
| 136 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 137 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 138 |
-
st.
|
| 139 |
-
|
| 140 |
-
if st.button("βΆοΈ Start Pre-processing"):
|
| 141 |
-
st.session_state.stage = "process"
|
| 142 |
-
st.rerun()
|
| 143 |
-
|
| 144 |
-
# --- STAGE 2: PRE-PROCESSING ---
|
| 145 |
-
elif st.session_state.stage == "process":
|
| 146 |
-
st.header("Step 2: Pre-processing Result")
|
| 147 |
-
with st.spinner("Straightening and correcting orientation..."):
|
| 148 |
-
original_image = st.session_state.original_image
|
| 149 |
-
straightened = find_and_straighten_document(original_image)
|
| 150 |
-
image_to_orient = straightened if straightened is not None and straightened.size > 0 else original_image
|
| 151 |
-
st.session_state.processed_image = correct_orientation(image_to_orient)
|
| 152 |
-
|
| 153 |
-
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), caption="Corrected Document", use_container_width=True)
|
| 154 |
-
st.info("The document has been straightened and oriented.")
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
if st.button("π Find Table Structure"):
|
| 157 |
-
st.
|
|
|
|
|
|
|
| 158 |
st.rerun()
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
st.rerun()
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
st.header("Step 3: Table Structure Analysis")
|
| 167 |
-
processed_image = st.session_state.processed_image
|
| 168 |
-
with st.spinner("Running Table Transformer model... This can take a moment."):
|
| 169 |
-
annotated_image = extract_and_draw_table_structure(processed_image)
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
st.rerun()
|
|
|
|
| 8 |
from scipy.spatial import distance as dist
|
| 9 |
|
| 10 |
# ==============================================================================
|
| 11 |
+
# App Configuration
|
| 12 |
# ==============================================================================
|
|
|
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="Document AI Toolkit",
|
| 15 |
page_icon="π€",
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# ==============================================================================
|
| 20 |
+
# Model Loading (Cached)
|
| 21 |
+
# ==============================================================================
|
| 22 |
@st.cache_resource
|
| 23 |
def load_model():
|
| 24 |
"""Loads the Table Transformer model and processor."""
|
| 25 |
+
return TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition"), DetrImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
model, processor = load_model()
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
+
# Core Image Processing Functions
|
| 31 |
# ==============================================================================
|
|
|
|
| 32 |
def order_points(pts):
|
| 33 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
| 34 |
+
leftMost, rightMost = xSorted[:2, :], xSorted[2:, :]
|
|
|
|
| 35 |
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
| 36 |
(tl, bl) = leftMost
|
| 37 |
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
|
|
|
|
| 49 |
maxHeight = max(int(heightA), int(heightB))
|
| 50 |
dst = np.array([[0, 0], [maxWidth - 1, 0], [maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")
|
| 51 |
M = cv2.getPerspectiveTransform(rect, dst)
|
| 52 |
+
return cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
|
|
|
| 53 |
|
| 54 |
def find_and_straighten_document(image):
|
| 55 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 58 |
if not contours: return None
|
| 59 |
page_contour = max(contours, key=cv2.contourArea)
|
| 60 |
if cv2.contourArea(page_contour) < (image.shape[0] * image.shape[1] * 0.1): return None
|
| 61 |
+
box = cv2.boxPoints(cv2.minAreaRect(page_contour))
|
|
|
|
| 62 |
return perspective_transform(image, box)
|
| 63 |
|
| 64 |
def correct_orientation(image):
|
| 65 |
+
"""Robust orientation correction using a cascade approach."""
|
| 66 |
try:
|
| 67 |
+
osd = pytesseract.image_to_osd(image, output_type=pytesseract.Output.DICT, timeout=5)
|
| 68 |
rotation = osd['rotate']
|
| 69 |
+
if rotation > 0:
|
| 70 |
+
angle_map = {90: cv2.ROTATE_90_COUNTERCLOCKWISE, 180: cv2.ROTATE_180, 270: cv2.ROTATE_90_CLOCKWISE}
|
| 71 |
+
return cv2.rotate(image, angle_map[rotation])
|
| 72 |
+
return image
|
| 73 |
+
except Exception:
|
| 74 |
+
# Fallback to bounding box method if OSD fails
|
| 75 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 76 |
+
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
| 77 |
+
orientations = {0: thresh, 90: cv2.rotate(thresh, cv2.ROTATE_90_CLOCKWISE), 180: cv2.rotate(thresh, cv2.ROTATE_180), 270: cv2.rotate(thresh, cv2.ROTATE_90_COUNTERCLOCKWISE)}
|
| 78 |
+
best_rotation, max_horizontal_boxes = 0, -1
|
| 79 |
+
for angle, rotated_img in orientations.items():
|
| 80 |
+
data = pytesseract.image_to_data(rotated_img, output_type=pytesseract.Output.DICT, timeout=5)
|
| 81 |
+
horizontal_boxes = sum(1 for i, conf in enumerate(data['conf']) if int(conf) > 10 and data['width'][i] > data['height'][i])
|
| 82 |
+
if horizontal_boxes > max_horizontal_boxes:
|
| 83 |
+
max_horizontal_boxes, best_rotation = horizontal_boxes, angle
|
| 84 |
+
angle_map = {90: cv2.ROTATE_90_CLOCKWISE, 180: cv2.ROTATE_180, 270: cv2.ROTATE_90_COUNTERCLOCKWISE}
|
| 85 |
+
return cv2.rotate(image, angle_map[best_rotation]) if best_rotation > 0 else image
|
| 86 |
|
| 87 |
def extract_and_draw_table_structure(image_bgr):
|
| 88 |
+
"""Finds and draws table structure using OpenCV."""
|
| 89 |
image_pil = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
|
| 90 |
inputs = processor(images=image_pil, return_tensors="pt")
|
| 91 |
with torch.no_grad():
|
| 92 |
outputs = model(**inputs)
|
| 93 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 94 |
+
results = processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
|
| 95 |
+
|
| 96 |
img_with_boxes = image_bgr.copy()
|
| 97 |
+
colors = {"table row": (0, 255, 0), "table column": (255, 0, 0), "table": (255, 0, 255)} # Red for columns
|
| 98 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 99 |
class_name = model.config.id2label[label.item()]
|
| 100 |
if class_name in colors:
|
| 101 |
xmin, ymin, xmax, ymax = [int(val) for val in box.tolist()]
|
| 102 |
+
cv2.rectangle(img_with_boxes, (xmin, ymin), (xmax, ymax), colors[class_name], 2)
|
|
|
|
| 103 |
return img_with_boxes
|
| 104 |
|
| 105 |
# ==============================================================================
|
| 106 |
+
# Streamlit UI
|
| 107 |
# ==============================================================================
|
| 108 |
|
| 109 |
+
# --- Session State Management ---
|
| 110 |
+
if "stage" not in st.session_state:
|
| 111 |
+
st.session_state.stage = "upload"
|
| 112 |
+
st.session_state.original_image = None
|
| 113 |
+
st.session_state.processed_image = None
|
| 114 |
+
st.session_state.annotated_image = None
|
| 115 |
+
|
| 116 |
+
# --- Sidebar Controls ---
|
| 117 |
+
with st.sidebar:
|
| 118 |
+
st.title("π€ Document AI Toolkit")
|
| 119 |
+
st.markdown("---")
|
| 120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if st.session_state.stage == "upload":
|
| 122 |
+
st.header("Step 1: Upload Image")
|
| 123 |
+
uploaded_file = st.file_uploader("Upload your document image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
|
|
|
|
| 124 |
if uploaded_file:
|
| 125 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 126 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 127 |
+
st.session_state.stage = "processing"
|
| 128 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
elif st.session_state.stage == "processing":
|
| 131 |
+
st.header("Step 2: Pre-process")
|
| 132 |
+
st.info("Straightening and correcting orientation...")
|
| 133 |
+
if st.button("βΆοΈ Start Pre-processing"):
|
| 134 |
+
with st.spinner("Working..."):
|
| 135 |
+
original_image = st.session_state.original_image
|
| 136 |
+
straightened = find_and_straighten_document(original_image)
|
| 137 |
+
image_to_orient = straightened if straightened is not None and straightened.size > 0 else original_image
|
| 138 |
+
st.session_state.processed_image = correct_orientation(image_to_orient)
|
| 139 |
+
st.session_state.stage = "analysis"
|
| 140 |
+
st.rerun()
|
| 141 |
+
|
| 142 |
+
elif st.session_state.stage == "analysis":
|
| 143 |
+
st.header("Step 3: Analyze Table")
|
| 144 |
+
st.info("Detecting table structure...")
|
| 145 |
if st.button("π Find Table Structure"):
|
| 146 |
+
with st.spinner("Running Table Transformer model..."):
|
| 147 |
+
st.session_state.annotated_image = extract_and_draw_table_structure(st.session_state.processed_image)
|
| 148 |
+
st.session_state.stage = "done"
|
| 149 |
st.rerun()
|
| 150 |
+
|
| 151 |
+
if st.session_state.stage != "upload":
|
| 152 |
+
if st.button("π Start Over"):
|
| 153 |
+
for key in list(st.session_state.keys()):
|
| 154 |
+
del st.session_state[key]
|
| 155 |
st.rerun()
|
| 156 |
|
| 157 |
+
# --- Main Panel Display ---
|
| 158 |
+
st.header("Document Processing Stages")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
if st.session_state.stage == "upload":
|
| 161 |
+
st.info("Please upload a document image using the sidebar to begin.")
|
| 162 |
+
|
| 163 |
+
if st.session_state.original_image is not None:
|
| 164 |
+
st.subheader("1. Original Image")
|
| 165 |
+
st.image(cv2.cvtColor(st.session_state.original_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
| 166 |
+
|
| 167 |
+
if st.session_state.processed_image is not None:
|
| 168 |
+
st.subheader("2. Pre-processed Image")
|
| 169 |
+
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), caption="Straightened & Oriented", use_container_width=True)
|
| 170 |
+
|
| 171 |
+
if st.session_state.annotated_image is not None:
|
| 172 |
+
st.subheader("3. Final Analysis")
|
| 173 |
+
tab1, tab2 = st.tabs(["β
Corrected Document", "π Table Structure"])
|
| 174 |
+
|
| 175 |
+
with tab1:
|
| 176 |
+
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
| 177 |
+
_, buf = cv2.imencode(".jpg", st.session_state.processed_image)
|
| 178 |
+
st.download_button("π₯ Download Clean Image", data=buf.tobytes(), file_name="corrected.jpg", mime="image/jpeg")
|
| 179 |
|
| 180 |
+
with tab2:
|
| 181 |
+
st.image(cv2.cvtColor(st.session_state.annotated_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
|
|