Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ import pytesseract
|
|
| 8 |
from scipy.spatial import distance as dist
|
| 9 |
|
| 10 |
# ==============================================================================
|
| 11 |
-
# App Configuration
|
| 12 |
# ==============================================================================
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="Document AI Toolkit",
|
|
@@ -16,6 +16,19 @@ st.set_page_config(
|
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# ==============================================================================
|
| 20 |
# Model Loading (Cached)
|
| 21 |
# ==============================================================================
|
|
@@ -27,7 +40,7 @@ def load_model():
|
|
| 27 |
model, processor = load_model()
|
| 28 |
|
| 29 |
# ==============================================================================
|
| 30 |
-
# Core Image Processing Functions
|
| 31 |
# ==============================================================================
|
| 32 |
def order_points(pts):
|
| 33 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
@@ -71,16 +84,18 @@ def correct_orientation(image):
|
|
| 71 |
return cv2.rotate(image, angle_map[rotation])
|
| 72 |
return image
|
| 73 |
except Exception:
|
| 74 |
-
# Fallback to bounding box method if OSD fails
|
| 75 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 76 |
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
| 77 |
orientations = {0: thresh, 90: cv2.rotate(thresh, cv2.ROTATE_90_CLOCKWISE), 180: cv2.rotate(thresh, cv2.ROTATE_180), 270: cv2.rotate(thresh, cv2.ROTATE_90_COUNTERCLOCKWISE)}
|
| 78 |
best_rotation, max_horizontal_boxes = 0, -1
|
| 79 |
for angle, rotated_img in orientations.items():
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
| 84 |
angle_map = {90: cv2.ROTATE_90_CLOCKWISE, 180: cv2.ROTATE_180, 270: cv2.ROTATE_90_COUNTERCLOCKWISE}
|
| 85 |
return cv2.rotate(image, angle_map[best_rotation]) if best_rotation > 0 else image
|
| 86 |
|
|
@@ -92,9 +107,8 @@ def extract_and_draw_table_structure(image_bgr):
|
|
| 92 |
outputs = model(**inputs)
|
| 93 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 94 |
results = processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
|
| 95 |
-
|
| 96 |
img_with_boxes = image_bgr.copy()
|
| 97 |
-
colors = {"table row": (0, 255, 0), "table column": (255, 0, 0), "table": (255, 0, 255)}
|
| 98 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 99 |
class_name = model.config.id2label[label.item()]
|
| 100 |
if class_name in colors:
|
|
@@ -118,64 +132,71 @@ with st.sidebar:
|
|
| 118 |
st.title("π€ Document AI Toolkit")
|
| 119 |
st.markdown("---")
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
if st.session_state.stage == "upload":
|
| 122 |
st.header("Step 1: Upload Image")
|
| 123 |
-
uploaded_file = st.file_uploader("Upload your document
|
| 124 |
if uploaded_file:
|
| 125 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 126 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 127 |
st.session_state.stage = "processing"
|
| 128 |
st.rerun()
|
| 129 |
-
|
| 130 |
elif st.session_state.stage == "processing":
|
| 131 |
st.header("Step 2: Pre-process")
|
| 132 |
-
st.
|
| 133 |
-
|
| 134 |
-
with st.spinner("Working..."):
|
| 135 |
original_image = st.session_state.original_image
|
| 136 |
straightened = find_and_straighten_document(original_image)
|
| 137 |
image_to_orient = straightened if straightened is not None and straightened.size > 0 else original_image
|
| 138 |
st.session_state.processed_image = correct_orientation(image_to_orient)
|
| 139 |
st.session_state.stage = "analysis"
|
| 140 |
st.rerun()
|
| 141 |
-
|
| 142 |
elif st.session_state.stage == "analysis":
|
| 143 |
st.header("Step 3: Analyze Table")
|
| 144 |
-
st.
|
| 145 |
-
if st.button("π Find Table Structure"):
|
| 146 |
with st.spinner("Running Table Transformer model..."):
|
| 147 |
st.session_state.annotated_image = extract_and_draw_table_structure(st.session_state.processed_image)
|
| 148 |
st.session_state.stage = "done"
|
| 149 |
st.rerun()
|
| 150 |
|
| 151 |
-
if st.session_state.stage != "upload":
|
| 152 |
-
if st.button("π Start Over"):
|
| 153 |
-
for key in list(st.session_state.keys()):
|
| 154 |
-
del st.session_state[key]
|
| 155 |
-
st.rerun()
|
| 156 |
-
|
| 157 |
# --- Main Panel Display ---
|
| 158 |
-
st.
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
if st.session_state.original_image is not None:
|
| 164 |
-
st.
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
if st.session_state.processed_image is not None:
|
| 168 |
-
st.
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
st.image(cv2.cvtColor(st.session_state.annotated_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
|
|
|
| 8 |
from scipy.spatial import distance as dist
|
| 9 |
|
| 10 |
# ==============================================================================
|
| 11 |
+
# App Configuration & Styling
|
| 12 |
# ==============================================================================
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="Document AI Toolkit",
|
|
|
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# Inject CSS for a centered, fixed-width layout
|
| 20 |
+
st.markdown("""
|
| 21 |
+
<style>
|
| 22 |
+
.main .block-container {
|
| 23 |
+
max-width: 900px;
|
| 24 |
+
padding-top: 2rem;
|
| 25 |
+
padding-right: 2rem;
|
| 26 |
+
padding-left: 2rem;
|
| 27 |
+
padding-bottom: 2rem;
|
| 28 |
+
}
|
| 29 |
+
</style>
|
| 30 |
+
""", unsafe_allow_html=True)
|
| 31 |
+
|
| 32 |
# ==============================================================================
|
| 33 |
# Model Loading (Cached)
|
| 34 |
# ==============================================================================
|
|
|
|
| 40 |
model, processor = load_model()
|
| 41 |
|
| 42 |
# ==============================================================================
|
| 43 |
+
# Core Image Processing Functions (Unchanged)
|
| 44 |
# ==============================================================================
|
| 45 |
def order_points(pts):
|
| 46 |
xSorted = pts[np.argsort(pts[:, 0]), :]
|
|
|
|
| 84 |
return cv2.rotate(image, angle_map[rotation])
|
| 85 |
return image
|
| 86 |
except Exception:
|
|
|
|
| 87 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 88 |
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
|
| 89 |
orientations = {0: thresh, 90: cv2.rotate(thresh, cv2.ROTATE_90_CLOCKWISE), 180: cv2.rotate(thresh, cv2.ROTATE_180), 270: cv2.rotate(thresh, cv2.ROTATE_90_COUNTERCLOCKWISE)}
|
| 90 |
best_rotation, max_horizontal_boxes = 0, -1
|
| 91 |
for angle, rotated_img in orientations.items():
|
| 92 |
+
try:
|
| 93 |
+
data = pytesseract.image_to_data(rotated_img, output_type=pytesseract.Output.DICT, timeout=5)
|
| 94 |
+
horizontal_boxes = sum(1 for i, conf in enumerate(data['conf']) if int(conf) > 10 and data['width'][i] > data['height'][i])
|
| 95 |
+
if horizontal_boxes > max_horizontal_boxes:
|
| 96 |
+
max_horizontal_boxes, best_rotation = horizontal_boxes, angle
|
| 97 |
+
except Exception:
|
| 98 |
+
continue
|
| 99 |
angle_map = {90: cv2.ROTATE_90_CLOCKWISE, 180: cv2.ROTATE_180, 270: cv2.ROTATE_90_COUNTERCLOCKWISE}
|
| 100 |
return cv2.rotate(image, angle_map[best_rotation]) if best_rotation > 0 else image
|
| 101 |
|
|
|
|
| 107 |
outputs = model(**inputs)
|
| 108 |
target_sizes = torch.tensor([image_pil.size[::-1]])
|
| 109 |
results = processor.post_process_object_detection(outputs, threshold=0.6, target_sizes=target_sizes)[0]
|
|
|
|
| 110 |
img_with_boxes = image_bgr.copy()
|
| 111 |
+
colors = {"table row": (0, 255, 0), "table column": (255, 0, 0), "table": (255, 0, 255)}
|
| 112 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
| 113 |
class_name = model.config.id2label[label.item()]
|
| 114 |
if class_name in colors:
|
|
|
|
| 132 |
st.title("π€ Document AI Toolkit")
|
| 133 |
st.markdown("---")
|
| 134 |
|
| 135 |
+
if st.button("π Start Over", use_container_width=True):
|
| 136 |
+
for key in list(st.session_state.keys()):
|
| 137 |
+
del st.session_state[key]
|
| 138 |
+
st.rerun()
|
| 139 |
+
|
| 140 |
if st.session_state.stage == "upload":
|
| 141 |
st.header("Step 1: Upload Image")
|
| 142 |
+
uploaded_file = st.file_uploader("Upload your document", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
|
| 143 |
if uploaded_file:
|
| 144 |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
| 145 |
st.session_state.original_image = cv2.imdecode(file_bytes, 1)
|
| 146 |
st.session_state.stage = "processing"
|
| 147 |
st.rerun()
|
|
|
|
| 148 |
elif st.session_state.stage == "processing":
|
| 149 |
st.header("Step 2: Pre-process")
|
| 150 |
+
if st.button("βΆοΈ Start Pre-processing", use_container_width=True, type="primary"):
|
| 151 |
+
with st.spinner("Straightening & correcting orientation..."):
|
|
|
|
| 152 |
original_image = st.session_state.original_image
|
| 153 |
straightened = find_and_straighten_document(original_image)
|
| 154 |
image_to_orient = straightened if straightened is not None and straightened.size > 0 else original_image
|
| 155 |
st.session_state.processed_image = correct_orientation(image_to_orient)
|
| 156 |
st.session_state.stage = "analysis"
|
| 157 |
st.rerun()
|
|
|
|
| 158 |
elif st.session_state.stage == "analysis":
|
| 159 |
st.header("Step 3: Analyze Table")
|
| 160 |
+
if st.button("π Find Table Structure", use_container_width=True, type="primary"):
|
|
|
|
| 161 |
with st.spinner("Running Table Transformer model..."):
|
| 162 |
st.session_state.annotated_image = extract_and_draw_table_structure(st.session_state.processed_image)
|
| 163 |
st.session_state.stage = "done"
|
| 164 |
st.rerun()
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
# --- Main Panel Display ---
|
| 167 |
+
st.title("Document Processing Workflow")
|
| 168 |
+
|
| 169 |
+
# Step 1: Upload
|
| 170 |
+
expander1 = st.expander("Step 1: Upload Original Image", expanded=(st.session_state.stage == "upload"))
|
| 171 |
+
with expander1:
|
| 172 |
+
if st.session_state.original_image is None:
|
| 173 |
+
st.info("Please upload a document image using the sidebar to begin.")
|
| 174 |
+
else:
|
| 175 |
+
st.image(cv2.cvtColor(st.session_state.original_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
| 176 |
+
st.success("Image uploaded successfully.")
|
| 177 |
+
|
| 178 |
+
# Step 2: Pre-process
|
| 179 |
if st.session_state.original_image is not None:
|
| 180 |
+
expander2 = st.expander("Step 2: Pre-process Document", expanded=(st.session_state.stage == "processing" or st.session_state.stage == "analysis"))
|
| 181 |
+
with expander2:
|
| 182 |
+
if st.session_state.processed_image is None:
|
| 183 |
+
st.info("Click 'Start Pre-processing' in the sidebar.")
|
| 184 |
+
else:
|
| 185 |
+
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), caption="Straightened & Oriented", use_container_width=True)
|
| 186 |
+
st.success("Pre-processing complete.")
|
| 187 |
+
|
| 188 |
+
# Step 3: Analysis
|
| 189 |
if st.session_state.processed_image is not None:
|
| 190 |
+
expander3 = st.expander("Step 3: Analyze Table Structure", expanded=(st.session_state.stage == "done"))
|
| 191 |
+
with expander3:
|
| 192 |
+
if st.session_state.annotated_image is None:
|
| 193 |
+
st.info("Click 'Find Table Structure' in the sidebar to run the analysis.")
|
| 194 |
+
else:
|
| 195 |
+
tab1, tab2 = st.tabs(["β
Corrected Document", "π Table Structure"])
|
| 196 |
+
with tab1:
|
| 197 |
+
st.image(cv2.cvtColor(st.session_state.processed_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
| 198 |
+
_, buf = cv2.imencode(".jpg", st.session_state.processed_image)
|
| 199 |
+
st.download_button("π₯ Download Clean Image", data=buf.tobytes(), file_name="corrected.jpg", mime="image/jpeg", use_container_width=True)
|
| 200 |
+
with tab2:
|
| 201 |
+
st.image(cv2.cvtColor(st.session_state.annotated_image, cv2.COLOR_BGR2RGB), use_container_width=True)
|
| 202 |
+
st.success("Analysis complete.")
|
|
|