File size: 9,466 Bytes
85fbac8
a88efc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85fbac8
a88efc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79bee3
a88efc1
 
 
 
 
592fccb
a88efc1
 
 
 
 
592fccb
a88efc1
 
 
 
 
592fccb
a88efc1
 
 
 
 
 
b79bee3
a88efc1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import spaces
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor

def preprocess_image(image):
    return image, gr.State([]), gr.State([]), image

def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")
    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")
    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    # Open the image and get its dimensions
    transparent_background = Image.open(first_frame_path).convert('RGBA')
    w, h = transparent_background.size
    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.02  # You can adjust this value as needed
    radius = int(fraction * min(w, h))
    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    return tracking_points, trackings_input_label, selected_point_map

# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True

def show_mask(mask, ax, random_color=False, borders=True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        import cv2
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        # Try to smooth contours
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
    ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))

def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
    combined_images = []  # List to store filenames of images with masks overlaid
    mask_images = []      # List to store filenames of separate mask images
    for i, (mask, score) in enumerate(zip(masks, scores)):
        # ---- Original Image with Mask Overlaid ----
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)  # Draw the mask with borders
        if box_coords is not None:
            show_box(box_coords, plt.gca())
        if len(scores) > 1:
            plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
        plt.axis('off')
        # Save the figure as a JPG file
        combined_filename = f"combined_image_{i+1}.jpg"
        plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
        combined_images.append(combined_filename)
        plt.close()  # Close the figure to free up memory
        # ---- Separate Mask Image (White Mask on Black Background) ----
        # Create a black image
        mask_image = np.zeros_like(image, dtype=np.uint8)
        # The mask is a binary array where the masked area is 1, else 0.
        # Convert the mask to a white color in the mask_image
        mask_layer = (mask > 0).astype(np.uint8) * 255
        for c in range(3):  # Assuming RGB, repeat mask for all channels
            mask_image[:, :, c] = mask_layer
        # Save the mask image
        mask_filename = f"mask_image_{i+1}.png"
        Image.fromarray(mask_image).save(mask_filename)
        mask_images.append(mask_filename)
        plt.close()  # Close the figure to free up memory
    return combined_images, mask_images

@spaces.GPU()
def sam_process(input_image, tracking_points, trackings_input_label):
    image = Image.open(input_image)
    image = np.array(image.convert("RGB"))
    # if checkpoint == "tiny":
    #     sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
    #     model_cfg = "sam2_hiera_t.yaml"
    # elif checkpoint == "small":
    #     sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
    #     model_cfg = "sam2_hiera_s.yaml"
    # elif checkpoint == "base-plus":
    #     sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
    #     model_cfg = "sam2_hiera_b+.yaml"
    # elif checkpoint == "large":
    #     sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
    #     model_cfg = "sam2_hiera_l.yaml"
    predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
    # print(predictor)
    with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
        predictor.set_image(image)
        input_point = np.array(tracking_points.value)
        input_label = np.array(trackings_input_label.value)
        print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)
        masks, scores, logits = predictor.predict(
            point_coords=input_point,
            point_labels=input_label,
            multimask_output=False,
        )
        sorted_ind = np.argsort(scores)[::-1]
        masks = masks[sorted_ind]
        scores = scores[sorted_ind]
        logits = logits[sorted_ind]
        print(masks.shape)
        results, mask_results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
        print(results)
        return results[0], mask_results[0]
    # sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
    # predictor = SAM2ImagePredictor(sam2_model)



def create_sam2_tab():
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    with gr.Column():
        gr.Markdown("# SAM2 Image Predictor")
        gr.Markdown("This is a simple demo for image segmentation with SAM2.")
        gr.Markdown("""Instructions:
        1. Upload your image
        2. With 'include' point type selected, Click on the object to mask
        3. Switch to 'exclude' point type if you want to specify an area to avoid
        4. Submit !
        """)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                points_map = gr.Image(
                    label="points map",
                    type="filepath",
                    interactive=True
                )
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
                    clear_points_btn = gr.Button("Clear Points")
                # checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output_result = gr.Image()
                output_result_mask = gr.Image()
        clear_points_btn.click(
            fn=preprocess_image,
            inputs=input_image,
            outputs=[first_frame_path, tracking_points, trackings_input_label, points_map],
            queue=False
        )
        points_map.upload(
            fn=preprocess_image,
            inputs=[points_map],
            outputs=[first_frame_path, tracking_points, trackings_input_label, input_image],
            queue=False
        )
        points_map.select(
            fn=get_point,
            inputs=[point_type, tracking_points, trackings_input_label, first_frame_path],
            outputs=[tracking_points, trackings_input_label, points_map],
            queue=False
        )
        submit_btn.click(
            fn=sam_process,
            inputs=[input_image, tracking_points, trackings_input_label],
            outputs=[output_result, output_result_mask]
        )
    return input_image, points_map, output_result_mask