Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import os | |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" | |
import torch | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageFilter | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
def preprocess_image(image): | |
return image, gr.State([]), gr.State([]), image | |
def get_point(point_type, tracking_points, trackings_input_label, original_image, evt): | |
x, y = evt.index | |
tracking_points.append((x, y)) | |
trackings_input_label.append(1 if point_type == "include" else 0) | |
# Redraw all points on original image | |
w, h = original_image.size | |
radius = int(min(w, h) * 0.02) | |
img = original_image.convert("RGBA") | |
draw = ImageDraw.Draw(img) | |
for i, (cx, cy) in enumerate(tracking_points): | |
color = (0, 255, 0, 255) if trackings_input_label[i] == 1 else (255, 0, 0, 255) | |
draw.ellipse([cx-radius, cy-radius, cx+radius, cy+radius], fill=color) | |
return tracking_points, trackings_input_label, img | |
# use bfloat16 for the entire notebook | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.get_device_properties(0).major >= 8: | |
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def show_mask(mask, ax, random_color=False, borders=True): | |
if random_color: | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30/255, 144/255, 255/255, 0.6]) | |
h, w = mask.shape[-2:] | |
mask = mask.astype(np.uint8) | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
if borders: | |
import cv2 | |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
# Try to smooth contours | |
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] | |
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) | |
ax.imshow(mask_image) | |
def show_points(coords, labels, ax, marker_size=375): | |
pos_points = coords[labels == 1] | |
neg_points = coords[labels == 0] | |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) | |
def show_box(box, ax): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) | |
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True): | |
combined_images = [] # List to store filenames of images with masks overlaid | |
mask_images = [] # List to store filenames of separate mask images | |
for i, (mask, score) in enumerate(zip(masks, scores)): | |
# ---- Original Image with Mask Overlaid ---- | |
plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders | |
if box_coords is not None: | |
show_box(box_coords, plt.gca()) | |
if len(scores) > 1: | |
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18) | |
plt.axis('off') | |
# Save the figure as a JPG file | |
combined_filename = f"combined_image_{i+1}.jpg" | |
plt.savefig(combined_filename, format='jpg', bbox_inches='tight') | |
combined_images.append(combined_filename) | |
plt.close() # Close the figure to free up memory | |
# ---- Separate Mask Image (White Mask on Black Background) ---- | |
# Create a black image | |
mask_image = np.zeros_like(image, dtype=np.uint8) | |
# The mask is a binary array where the masked area is 1, else 0. | |
# Convert the mask to a white color in the mask_image | |
mask_layer = (mask > 0).astype(np.uint8) * 255 | |
for c in range(3): # Assuming RGB, repeat mask for all channels | |
mask_image[:, :, c] = mask_layer | |
# Save the mask image | |
mask_filename = f"mask_image_{i+1}.png" | |
Image.fromarray(mask_image).save(mask_filename) | |
mask_images.append(mask_filename) | |
plt.close() # Close the figure to free up memory | |
return combined_images, mask_images | |
def sam_process(original_image, points, labels): | |
# Convert image to numpy array for SAM2 processing | |
image = np.array(original_image) | |
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large") | |
predictor.set_image(image) | |
input_point = np.array(points) | |
input_label = np.array(labels) | |
masks, scores, _ = predictor.predict(input_point, input_label, multimask_output=False) | |
sorted_indices = np.argsort(scores)[::-1] | |
masks = masks[sorted_indices] | |
# Generate mask image | |
mask = masks[0] * 255 | |
mask_image = Image.fromarray(mask.astype(np.uint8)) | |
return mask_image | |
# sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") | |
# predictor = SAM2ImagePredictor(sam2_model) | |
def create_sam2_tab(): | |
first_frame = gr.State() # Tracks original image | |
tracking_points = gr.State([]) | |
trackings_input_label = gr.State([]) | |
with gr.Column(): | |
gr.Markdown("# SAM2 Image Predictor") | |
gr.Markdown("1. Upload your image\n2. Click points to mask\n3. Submit") | |
points_map = gr.Image(label="Points Map", type="pil", interactive=True) | |
input_image = gr.Image(type="pil", visible=False) # Original image | |
with gr.Row(): | |
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type") | |
clear_button = gr.Button("Clear Points") | |
submit_button = gr.Button("Submit") | |
output_image = gr.Image("Segmented Output") | |
# Event handlers | |
points_map.upload( | |
lambda img: (img, img, [], []), | |
inputs=points_map, | |
outputs=[input_image, first_frame, tracking_points, trackings_input_label] | |
) | |
clear_button.click( | |
lambda img: ([], [], img), | |
inputs=first_frame, | |
outputs=[tracking_points, trackings_input_label, points_map] | |
) | |
points_map.select( | |
get_point, | |
inputs=[point_type, tracking_points, trackings_input_label, first_frame], | |
outputs=[tracking_points, trackings_input_label, points_map] | |
) | |
submit_button.click( | |
sam_process, | |
inputs=[input_image, tracking_points, trackings_input_label], | |
outputs=output_image | |
) | |
return input_image, points_map, output_image | |