LPX55's picture
attemp was made
f7c1ee7
raw
history blame
6.84 kB
import spaces
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
def preprocess_image(image):
return image, gr.State([]), gr.State([]), image
def get_point(point_type, tracking_points, trackings_input_label, original_image, evt):
x, y = evt.index
tracking_points.append((x, y))
trackings_input_label.append(1 if point_type == "include" else 0)
# Redraw all points on original image
w, h = original_image.size
radius = int(min(w, h) * 0.02)
img = original_image.convert("RGBA")
draw = ImageDraw.Draw(img)
for i, (cx, cy) in enumerate(tracking_points):
color = (0, 255, 0, 255) if trackings_input_label[i] == 1 else (255, 0, 0, 255)
draw.ellipse([cx-radius, cy-radius, cx+radius, cy+radius], fill=color)
return tracking_points, trackings_input_label, img
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def show_mask(mask, ax, random_color=False, borders=True):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask = mask.astype(np.uint8)
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
if borders:
import cv2
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Try to smooth contours
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
combined_images = [] # List to store filenames of images with masks overlaid
mask_images = [] # List to store filenames of separate mask images
for i, (mask, score) in enumerate(zip(masks, scores)):
# ---- Original Image with Mask Overlaid ----
plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(mask, plt.gca(), borders=borders) # Draw the mask with borders
if box_coords is not None:
show_box(box_coords, plt.gca())
if len(scores) > 1:
plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
plt.axis('off')
# Save the figure as a JPG file
combined_filename = f"combined_image_{i+1}.jpg"
plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
combined_images.append(combined_filename)
plt.close() # Close the figure to free up memory
# ---- Separate Mask Image (White Mask on Black Background) ----
# Create a black image
mask_image = np.zeros_like(image, dtype=np.uint8)
# The mask is a binary array where the masked area is 1, else 0.
# Convert the mask to a white color in the mask_image
mask_layer = (mask > 0).astype(np.uint8) * 255
for c in range(3): # Assuming RGB, repeat mask for all channels
mask_image[:, :, c] = mask_layer
# Save the mask image
mask_filename = f"mask_image_{i+1}.png"
Image.fromarray(mask_image).save(mask_filename)
mask_images.append(mask_filename)
plt.close() # Close the figure to free up memory
return combined_images, mask_images
@spaces.GPU()
def sam_process(original_image, points, labels):
# Convert image to numpy array for SAM2 processing
image = np.array(original_image)
predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
predictor.set_image(image)
input_point = np.array(points)
input_label = np.array(labels)
masks, scores, _ = predictor.predict(input_point, input_label, multimask_output=False)
sorted_indices = np.argsort(scores)[::-1]
masks = masks[sorted_indices]
# Generate mask image
mask = masks[0] * 255
mask_image = Image.fromarray(mask.astype(np.uint8))
return mask_image
# sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
# predictor = SAM2ImagePredictor(sam2_model)
def create_sam2_tab():
first_frame = gr.State() # Tracks original image
tracking_points = gr.State([])
trackings_input_label = gr.State([])
with gr.Column():
gr.Markdown("# SAM2 Image Predictor")
gr.Markdown("1. Upload your image\n2. Click points to mask\n3. Submit")
points_map = gr.Image(label="Points Map", type="pil", interactive=True)
input_image = gr.Image(type="pil", visible=False) # Original image
with gr.Row():
point_type = gr.Radio(["include", "exclude"], value="include", label="Point Type")
clear_button = gr.Button("Clear Points")
submit_button = gr.Button("Submit")
output_image = gr.Image("Segmented Output")
# Event handlers
points_map.upload(
lambda img: (img, img, [], []),
inputs=points_map,
outputs=[input_image, first_frame, tracking_points, trackings_input_label]
)
clear_button.click(
lambda img: ([], [], img),
inputs=first_frame,
outputs=[tracking_points, trackings_input_label, points_map]
)
points_map.select(
get_point,
inputs=[point_type, tracking_points, trackings_input_label, first_frame],
outputs=[tracking_points, trackings_input_label, points_map]
)
submit_button.click(
sam_process,
inputs=[input_image, tracking_points, trackings_input_label],
outputs=output_image
)
return input_image, points_map, output_image