This Pull Request also extends a video & optimizes time & VRAM

#1
.gitattributes CHANGED
@@ -36,3 +36,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
36
  img_examples/1.png filter=lfs diff=lfs merge=lfs -text
37
  img_examples/2.jpg filter=lfs diff=lfs merge=lfs -text
38
  img_examples/3.png filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
36
  img_examples/1.png filter=lfs diff=lfs merge=lfs -text
37
  img_examples/2.jpg filter=lfs diff=lfs merge=lfs -text
38
  img_examples/3.png filter=lfs diff=lfs merge=lfs -text
39
+ img_examples/Example1.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ img_examples/Example1.png filter=lfs diff=lfs merge=lfs -text
41
+ img_examples/Example2.webp filter=lfs diff=lfs merge=lfs -text
42
+ img_examples/Example3.jpg filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -4,11 +4,19 @@ emoji: 📹⚡️
4
  colorFrom: pink
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 5.32.0
8
- app_file: app.py
9
  pinned: true
 
 
10
  license: apache-2.0
11
- short_description: fast video generation from images & text
 
 
 
 
 
 
 
 
12
  ---
13
  paper: arxiv:2504.12626
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
4
  colorFrom: pink
5
  colorTo: gray
6
  sdk: gradio
 
 
7
  pinned: true
8
+ sdk_version: 5.29.1
9
+ app_file: app.py
10
  license: apache-2.0
11
+ short_description: Text-to-Video/Image-to-Video/Video extender (timed prompt)
12
+ tags:
13
+ - Image-to-Video
14
+ - Image-2-Video
15
+ - Img-to-Vid
16
+ - Img-2-Vid
17
+ - language models
18
+ - LLMs
19
+ suggested_hardware: zero-a10g
20
  ---
21
  paper: arxiv:2504.12626
22
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -4,14 +4,29 @@ import os
4
 
5
  os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
 
 
7
  import gradio as gr
8
  import torch
9
  import traceback
10
  import einops
11
  import safetensors.torch as sf
12
  import numpy as np
 
 
13
  import math
14
- import spaces
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  from PIL import Image
17
  from diffusers import AutoencoderKLHunyuanVideo
@@ -20,128 +35,293 @@ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode
20
  from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
21
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
22
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
23
- from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
 
24
  from diffusers_helper.thread_utils import AsyncStream, async_run
25
  from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
26
  from transformers import SiglipImageProcessor, SiglipVisionModel
27
  from diffusers_helper.clip_vision import hf_clip_vision_encode
28
  from diffusers_helper.bucket_tools import find_nearest_bucket
 
 
29
 
 
30
 
31
- free_mem_gb = get_cuda_free_memory_gb(gpu)
32
- high_vram = free_mem_gb > 60
33
-
34
- print(f'Free VRAM {free_mem_gb} GB')
35
- print(f'High-VRAM Mode: {high_vram}')
36
-
37
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
38
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
39
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
40
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
41
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
42
-
43
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
44
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
45
-
46
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
47
-
48
- vae.eval()
49
- text_encoder.eval()
50
- text_encoder_2.eval()
51
- image_encoder.eval()
52
- transformer.eval()
53
 
54
- if not high_vram:
55
- vae.enable_slicing()
56
- vae.enable_tiling()
57
 
58
- transformer.high_quality_fp32_output_for_inference = True
59
- print('transformer.high_quality_fp32_output_for_inference = True')
60
-
61
- transformer.to(dtype=torch.bfloat16)
62
- vae.to(dtype=torch.float16)
63
- image_encoder.to(dtype=torch.float16)
64
- text_encoder.to(dtype=torch.float16)
65
- text_encoder_2.to(dtype=torch.float16)
66
-
67
- vae.requires_grad_(False)
68
- text_encoder.requires_grad_(False)
69
- text_encoder_2.requires_grad_(False)
70
- image_encoder.requires_grad_(False)
71
- transformer.requires_grad_(False)
72
-
73
- if not high_vram:
74
- # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
75
- DynamicSwapInstaller.install_model(transformer, device=gpu)
76
- DynamicSwapInstaller.install_model(text_encoder, device=gpu)
77
- else:
78
- text_encoder.to(gpu)
79
- text_encoder_2.to(gpu)
80
- image_encoder.to(gpu)
81
- vae.to(gpu)
82
- transformer.to(gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  stream = AsyncStream()
85
 
86
  outputs_folder = './outputs/'
87
  os.makedirs(outputs_folder, exist_ok=True)
88
 
89
- examples = [
90
- ["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm.",],
91
- ["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
92
- ["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."],
93
- ]
94
-
95
- def generate_examples(input_image, prompt):
96
-
97
- t2v=False
98
- n_prompt=""
99
- seed=31337
100
- total_second_length=5
101
- latent_window_size=9
102
- steps=25
103
- cfg=1.0
104
- gs=10.0
105
- rs=0.0
106
- gpu_memory_preservation=6
107
- use_teacache=True
108
- mp4_crf=16
109
-
110
- global stream
111
-
112
- # assert input_image is not None, 'No input image!'
113
- if t2v:
114
- default_height, default_width = 640, 640
115
- input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
116
- print("No input image provided. Using a blank white image.")
117
-
118
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
119
-
120
- stream = AsyncStream()
121
-
122
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
123
 
124
- output_filename = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
- while True:
127
- flag, data = stream.output_queue.next()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- if flag == 'file':
130
- output_filename = data
131
- yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
 
132
 
133
- if flag == 'progress':
134
- preview, desc, html = data
135
- yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
 
136
 
137
- if flag == 'end':
138
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
139
- break
140
 
 
 
 
 
 
141
 
142
-
143
- @torch.no_grad()
144
- def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
145
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
146
  total_latent_sections = int(max(round(total_latent_sections), 1))
147
 
@@ -164,54 +344,50 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
164
  fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
165
  load_model_as_complete(text_encoder_2, target_device=gpu)
166
 
167
- llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
168
-
169
- if cfg == 1:
170
- llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
171
- else:
172
- llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
173
 
174
- llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
175
- llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
176
 
177
  # Processing input image
178
 
179
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
180
 
181
  H, W, C = input_image.shape
182
- height, width = find_nearest_bucket(H, W, resolution=640)
183
- input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
184
-
185
- Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
186
-
187
- input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
188
- input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
189
-
190
- # VAE encoding
191
-
192
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
193
-
194
- if not high_vram:
195
- load_model_as_complete(vae, target_device=gpu)
196
-
197
- start_latent = vae_encode(input_image_pt, vae)
198
-
199
- # CLIP Vision
200
-
201
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
202
-
203
- if not high_vram:
204
- load_model_as_complete(image_encoder, target_device=gpu)
 
 
205
 
206
- image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
207
- image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
 
 
 
208
 
209
  # Dtype
210
 
211
- llama_vec = llama_vec.to(transformer.dtype)
212
- llama_vec_n = llama_vec_n.to(transformer.dtype)
213
- clip_l_pooler = clip_l_pooler.to(transformer.dtype)
214
- clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
215
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
216
 
217
  # Sampling
@@ -226,6 +402,63 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
226
  history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
227
  total_generated_latent_frames = 1
228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  for section_index in range(total_latent_sections):
230
  if stream.input_queue.top() == 'end':
231
  stream.output_queue.push(('end', None))
@@ -233,6 +466,9 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
233
 
234
  print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
235
 
 
 
 
236
  if not high_vram:
237
  unload_complete_models()
238
  move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
@@ -242,30 +478,229 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
242
  else:
243
  transformer.initialize_teacache(enable_teacache=False)
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
  def callback(d):
246
  preview = d['denoised']
247
  preview = vae_decode_fake(preview)
248
-
249
  preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
250
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
251
-
252
  if stream.input_queue.top() == 'end':
253
  stream.output_queue.push(('end', None))
254
  raise KeyboardInterrupt('User ends the task.')
255
-
256
  current_step = d['i'] + 1
257
  percentage = int(100.0 * current_step / steps)
258
  hint = f'Sampling {current_step}/{steps}'
259
- desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
260
  stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
261
  return
 
 
 
262
 
263
- indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
264
- clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
265
- clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
266
 
267
- clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
268
- clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
  generated_latents = sample_hunyuan(
271
  transformer=transformer,
@@ -298,34 +733,275 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
298
  callback=callback,
299
  )
300
 
301
- total_generated_latent_frames += int(generated_latents.shape[2])
302
- history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
 
303
 
304
- if not high_vram:
305
- offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
306
- load_model_as_complete(vae, target_device=gpu)
 
307
 
308
- real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
 
309
 
310
- if history_pixels is None:
311
- history_pixels = vae_decode(real_history_latents, vae).cpu()
312
- else:
313
- section_latent_frames = latent_window_size * 2
314
- overlapped_frames = latent_window_size * 4 - 3
 
315
 
316
- current_pixels = vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu()
317
- history_pixels = soft_append_bcthw(history_pixels, current_pixels, overlapped_frames)
 
 
318
 
319
- if not high_vram:
320
- unload_complete_models()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
 
322
- output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
 
324
- save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
 
325
 
326
- print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
327
 
328
- stream.output_queue.push(('file', output_filename))
329
  except:
330
  traceback.print_exc()
331
 
@@ -337,62 +1013,54 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
337
  stream.output_queue.push(('end', None))
338
  return
339
 
340
- def get_duration(input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf):
341
- return total_second_length * 60
342
 
343
  @spaces.GPU(duration=get_duration)
344
- def process(input_image, prompt,
345
- t2v=False,
346
- n_prompt="",
347
- seed=31337,
348
- total_second_length=5,
349
- latent_window_size=9,
350
- steps=25,
351
- cfg=1.0,
352
- gs=10.0,
353
- rs=0.0,
354
- gpu_memory_preservation=6,
355
- use_teacache=True,
356
- mp4_crf=16
 
 
 
 
 
 
357
  ):
 
358
  global stream
359
-
 
 
 
 
 
 
 
 
 
 
360
  # assert input_image is not None, 'No input image!'
361
- if t2v:
362
  default_height, default_width = 640, 640
363
  input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
364
  print("No input image provided. Using a blank white image.")
365
- else:
366
- composite_rgba_uint8 = input_image["composite"]
367
 
368
- # rgb_uint8 will be (H, W, 3), dtype uint8
369
- rgb_uint8 = composite_rgba_uint8[:, :, :3]
370
- # mask_uint8 will be (H, W), dtype uint8
371
- mask_uint8 = composite_rgba_uint8[:, :, 3]
372
-
373
- # Create background
374
- h, w = rgb_uint8.shape[:2]
375
- # White background, (H, W, 3), dtype uint8
376
- background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
377
-
378
- # Normalize mask to range [0.0, 1.0].
379
- alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
380
-
381
- # Expand alpha to 3 channels to match RGB images for broadcasting.
382
- # alpha_mask_float32 will have shape (H, W, 3)
383
- alpha_mask_float32 = np.stack([alpha_normalized_float32] * 3, axis=2)
384
-
385
- # alpha blending
386
- blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
387
- background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
388
-
389
- input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
390
-
391
  yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
392
 
393
  stream = AsyncStream()
394
 
395
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf)
396
 
397
  output_filename = None
398
 
@@ -405,64 +1073,234 @@ def process(input_image, prompt,
405
 
406
  if flag == 'progress':
407
  preview, desc, html = data
 
408
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
409
 
410
  if flag == 'end':
411
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
 
 
 
 
 
 
 
 
 
 
412
  break
413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414
 
415
  def end_process():
416
  stream.input_queue.push('end')
417
 
 
 
 
 
 
 
 
 
 
 
418
 
419
- quick_prompts = [
420
- 'The girl dances gracefully, with clear movements, full of charm.',
421
- 'A character doing some simple body movements.',
422
- ]
423
- quick_prompts = [[x] for x in quick_prompts]
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425
 
426
  css = make_progress_bar_css()
427
- block = gr.Blocks(css=css).queue()
428
  with block:
429
- gr.Markdown('# FramePack-F1')
430
- gr.Markdown(f"""### Video diffusion, but feels like image diffusion
431
- *FramePack F1 - a FramePack model that only predicts future frames from history frames*
432
- ### *beta* FramePack Fill 🖋️- draw a mask over the input image to inpaint the video output
433
- adapted from the officical code repo [FramePack](https://github.com/lllyasviel/FramePack) by [lllyasviel](lllyasviel/FramePack_F1_I2V_HY_20250503) and [FramePack Studio](https://github.com/colinurbs/FramePack-Studio) 🙌🏻
 
 
434
  """)
 
 
435
  with gr.Row():
436
  with gr.Column():
437
- input_image = gr.ImageEditor(type="numpy", label="Image", height=320, brush=gr.Brush(colors=["#ffffff"]))
438
- prompt = gr.Textbox(label="Prompt", value='')
439
- t2v = gr.Checkbox(label="do text-to-video", value=False)
440
- example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
441
- example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
442
 
443
  with gr.Row():
444
- start_button = gr.Button(value="Start Generation")
445
- end_button = gr.Button(value="End Generation", interactive=False)
 
446
 
447
- total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=5, value=2, step=0.1)
448
- with gr.Group():
449
- with gr.Accordion("Advanced settings", open=False):
450
- use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
451
-
452
- n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
453
- seed = gr.Number(label="Seed", value=31337, precision=0)
454
-
455
-
456
- latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
457
- steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
458
-
459
- cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
460
- gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
461
- rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
462
-
463
- gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
464
-
465
- mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466
 
467
  with gr.Column():
468
  preview_image = gr.Image(label="Next Latents", height=200, visible=False)
@@ -470,19 +1308,201 @@ adapted from the officical code repo [FramePack](https://github.com/lllyasviel/F
470
  progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
471
  progress_bar = gr.HTML('', elem_classes='no-generating-animation')
472
 
473
- gr.HTML('<div style="text-align:center; margin-top:20px;">Share your results and find ideas at the <a href="https://x.com/search?q=framepack&f=live" target="_blank">FramePack Twitter (X) thread</a></div>')
474
-
475
- ips = [input_image, prompt, t2v, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf]
476
- start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
  end_button.click(fn=end_process)
478
 
479
- # gr.Examples(
480
- # examples,
481
- # inputs=[input_image, prompt],
482
- # outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
483
- # fn=generate_examples,
484
- # cache_examples=True
485
- # )
486
-
487
-
488
- block.launch(share=True, mcp_server=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
 
7
+ import spaces
8
  import gradio as gr
9
  import torch
10
  import traceback
11
  import einops
12
  import safetensors.torch as sf
13
  import numpy as np
14
+ import random
15
+ import time
16
  import math
17
+ # 20250506 pftq: Added for video input loading
18
+ import decord
19
+ # 20250506 pftq: Added for progress bars in video_encode
20
+ from tqdm import tqdm
21
+ # 20250506 pftq: Normalize file paths for Windows compatibility
22
+ import pathlib
23
+ # 20250506 pftq: for easier to read timestamp
24
+ from datetime import datetime
25
+ # 20250508 pftq: for saving prompt to mp4 comments metadata
26
+ import imageio_ffmpeg
27
+ import tempfile
28
+ import shutil
29
+ import subprocess
30
 
31
  from PIL import Image
32
  from diffusers import AutoencoderKLHunyuanVideo
 
35
  from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
36
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
37
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
38
+ if torch.cuda.device_count() > 0:
39
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
40
  from diffusers_helper.thread_utils import AsyncStream, async_run
41
  from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
42
  from transformers import SiglipImageProcessor, SiglipVisionModel
43
  from diffusers_helper.clip_vision import hf_clip_vision_encode
44
  from diffusers_helper.bucket_tools import find_nearest_bucket
45
+ from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig, HunyuanVideoTransformer3DModel, HunyuanVideoPipeline
46
+ import pillow_heif
47
 
48
+ pillow_heif.register_heif_opener()
49
 
50
+ high_vram = False
51
+ free_mem_gb = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ if torch.cuda.device_count() > 0:
54
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
55
+ high_vram = free_mem_gb > 60
56
 
57
+ print(f'Free VRAM {free_mem_gb} GB')
58
+ print(f'High-VRAM Mode: {high_vram}')
59
+
60
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
61
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
62
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
63
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
64
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
65
+
66
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
67
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
68
+
69
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePack_F1_I2V_HY_20250503', torch_dtype=torch.bfloat16).cpu()
70
+
71
+ vae.eval()
72
+ text_encoder.eval()
73
+ text_encoder_2.eval()
74
+ image_encoder.eval()
75
+ transformer.eval()
76
+
77
+ if not high_vram:
78
+ vae.enable_slicing()
79
+ vae.enable_tiling()
80
+
81
+ transformer.high_quality_fp32_output_for_inference = True
82
+ print('transformer.high_quality_fp32_output_for_inference = True')
83
+
84
+ transformer.to(dtype=torch.bfloat16)
85
+ vae.to(dtype=torch.float16)
86
+ image_encoder.to(dtype=torch.float16)
87
+ text_encoder.to(dtype=torch.float16)
88
+ text_encoder_2.to(dtype=torch.float16)
89
+
90
+ vae.requires_grad_(False)
91
+ text_encoder.requires_grad_(False)
92
+ text_encoder_2.requires_grad_(False)
93
+ image_encoder.requires_grad_(False)
94
+ transformer.requires_grad_(False)
95
+
96
+ if not high_vram:
97
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
98
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
99
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
100
+ else:
101
+ text_encoder.to(gpu)
102
+ text_encoder_2.to(gpu)
103
+ image_encoder.to(gpu)
104
+ vae.to(gpu)
105
+ transformer.to(gpu)
106
 
107
  stream = AsyncStream()
108
 
109
  outputs_folder = './outputs/'
110
  os.makedirs(outputs_folder, exist_ok=True)
111
 
112
+ default_local_storage = {
113
+ "generation-mode": "image",
114
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
+ @spaces.GPU()
117
+ @torch.no_grad()
118
+ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
119
+ """
120
+ Encode a video into latent representations using the VAE.
121
+
122
+ Args:
123
+ video_path: Path to the input video file.
124
+ vae: AutoencoderKLHunyuanVideo model.
125
+ height, width: Target resolution for resizing frames.
126
+ vae_batch_size: Number of frames to process per batch.
127
+ device: Device for computation (e.g., "cuda").
128
+
129
+ Returns:
130
+ start_latent: Latent of the first frame (for compatibility with original code).
131
+ input_image_np: First frame as numpy array (for CLIP vision encoding).
132
+ history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
133
+ fps: Frames per second of the input video.
134
+ """
135
+ # 20250506 pftq: Normalize video path for Windows compatibility
136
+ video_path = str(pathlib.Path(video_path).resolve())
137
+ print(f"Processing video: {video_path}")
138
+
139
+ # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
140
+ if device == "cuda" and not torch.cuda.is_available():
141
+ print("CUDA is not available, falling back to CPU")
142
+ device = "cpu"
143
 
144
+ try:
145
+ # 20250506 pftq: Load video and get FPS
146
+ print("Initializing VideoReader...")
147
+ vr = decord.VideoReader(video_path)
148
+ fps = vr.get_avg_fps() # Get input video FPS
149
+ num_real_frames = len(vr)
150
+ print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
151
+
152
+ # Truncate to nearest latent size (multiple of 4)
153
+ latent_size_factor = 4
154
+ num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
155
+ if num_frames != num_real_frames:
156
+ print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
157
+ num_real_frames = num_frames
158
+
159
+ # 20250506 pftq: Read frames
160
+ print("Reading video frames...")
161
+ frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
162
+ print(f"Frames read: {frames.shape}")
163
+
164
+ # 20250506 pftq: Get native video resolution
165
+ native_height, native_width = frames.shape[1], frames.shape[2]
166
+ print(f"Native video resolution: {native_width}x{native_height}")
167
+
168
+ # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
169
+ target_height = native_height if height is None else height
170
+ target_width = native_width if width is None else width
171
+
172
+ # 20250506 pftq: Adjust to nearest bucket for model compatibility
173
+ if not no_resize:
174
+ target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
175
+ print(f"Adjusted resolution: {target_width}x{target_height}")
176
+ else:
177
+ print(f"Using native resolution without resizing: {target_width}x{target_height}")
178
+
179
+ # 20250506 pftq: Preprocess frames to match original image processing
180
+ processed_frames = []
181
+ for i, frame in enumerate(frames):
182
+ #print(f"Preprocessing frame {i+1}/{num_frames}")
183
+ frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
184
+ processed_frames.append(frame_np)
185
+ processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
186
+ print(f"Frames preprocessed: {processed_frames.shape}")
187
+
188
+ # 20250506 pftq: Save first frame for CLIP vision encoding
189
+ input_image_np = processed_frames[0]
190
+
191
+ # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
192
+ print("Converting frames to tensor...")
193
+ frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
194
+ frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
195
+ frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
196
+ frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
197
+ print(f"Tensor shape: {frames_pt.shape}")
198
+
199
+ # 20250507 pftq: Save pixel frames for use in worker
200
+ input_video_pixels = frames_pt.cpu()
201
+
202
+ # 20250506 pftq: Move to device
203
+ print(f"Moving tensor to device: {device}")
204
+ frames_pt = frames_pt.to(device)
205
+ print("Tensor moved to device")
206
+
207
+ # 20250506 pftq: Move VAE to device
208
+ print(f"Moving VAE to device: {device}")
209
+ vae.to(device)
210
+ print("VAE moved to device")
211
+
212
+ # 20250506 pftq: Encode frames in batches
213
+ print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
214
+ latents = []
215
+ vae.eval()
216
+ with torch.no_grad():
217
+ for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
218
+ #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
219
+ batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
220
+ try:
221
+ # 20250506 pftq: Log GPU memory before encoding
222
+ if device == "cuda":
223
+ free_mem = torch.cuda.memory_allocated() / 1024**3
224
+ #print(f"GPU memory before encoding: {free_mem:.2f} GB")
225
+ batch_latent = vae_encode(batch, vae)
226
+ # 20250506 pftq: Synchronize CUDA to catch issues
227
+ if device == "cuda":
228
+ torch.cuda.synchronize()
229
+ #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
230
+ latents.append(batch_latent)
231
+ #print(f"Batch encoded, latent shape: {batch_latent.shape}")
232
+ except RuntimeError as e:
233
+ print(f"Error during VAE encoding: {str(e)}")
234
+ if device == "cuda" and "out of memory" in str(e).lower():
235
+ print("CUDA out of memory, try reducing vae_batch_size or using CPU")
236
+ raise
237
+
238
+ # 20250506 pftq: Concatenate latents
239
+ print("Concatenating latents...")
240
+ history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
241
+ print(f"History latents shape: {history_latents.shape}")
242
+
243
+ # 20250506 pftq: Get first frame's latent
244
+ start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
245
+ print(f"Start latent shape: {start_latent.shape}")
246
+
247
+ # 20250506 pftq: Move VAE back to CPU to free GPU memory
248
+ if device == "cuda":
249
+ vae.to(cpu)
250
+ torch.cuda.empty_cache()
251
+ print("VAE moved back to CPU, CUDA cache cleared")
252
+
253
+ return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels
254
+
255
+ except Exception as e:
256
+ print(f"Error in video_encode: {str(e)}")
257
+ raise
258
+
259
+ # 20250508 pftq: for saving prompt to mp4 metadata comments
260
+ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
261
+ try:
262
+ # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
263
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
264
+
265
+ # Check if input file exists
266
+ if not os.path.exists(input_file):
267
+ print(f"Error: Input file {input_file} does not exist")
268
+ return False
269
+
270
+ # Create a temporary file path
271
+ temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
272
+
273
+ # FFmpeg command using the bundled binary
274
+ command = [
275
+ ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
276
+ '-i', input_file, # input file
277
+ '-metadata', f'comment={comments}', # set comment metadata
278
+ '-c:v', 'copy', # copy video stream without re-encoding
279
+ '-c:a', 'copy', # copy audio stream without re-encoding
280
+ '-y', # overwrite output file if it exists
281
+ temp_file # temporary output file
282
+ ]
283
+
284
+ # Run the FFmpeg command
285
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
286
+
287
+ if result.returncode == 0:
288
+ # Replace the original file with the modified one
289
+ shutil.move(temp_file, input_file)
290
+ print(f"Successfully added comments to {input_file}")
291
+ return True
292
+ else:
293
+ # Clean up temp file if FFmpeg fails
294
+ if os.path.exists(temp_file):
295
+ os.remove(temp_file)
296
+ print(f"Error: FFmpeg failed with message:\n{result.stderr}")
297
+ return False
298
+
299
+ except Exception as e:
300
+ # Clean up temp file in case of other errors
301
+ if 'temp_file' in locals() and os.path.exists(temp_file):
302
+ os.remove(temp_file)
303
+ print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
304
+ return False
305
 
306
+ @torch.no_grad()
307
+ def worker(input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
308
+ def encode_prompt(prompt, n_prompt):
309
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
310
 
311
+ if cfg == 1:
312
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
313
+ else:
314
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
315
 
316
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
317
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
 
318
 
319
+ llama_vec = llama_vec.to(transformer.dtype)
320
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
321
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
322
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
323
+ return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
324
 
 
 
 
325
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
326
  total_latent_sections = int(max(round(total_latent_sections), 1))
327
 
 
344
  fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
345
  load_model_as_complete(text_encoder_2, target_device=gpu)
346
 
347
+ prompt_parameters = []
 
 
 
 
 
348
 
349
+ for prompt_part in prompts:
350
+ prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
351
 
352
  # Processing input image
353
 
354
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
355
 
356
  H, W, C = input_image.shape
357
+ height, width = find_nearest_bucket(H, W, resolution=resolution)
358
+
359
+ def get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram):
360
+ input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
361
+
362
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
363
+
364
+ input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
365
+ input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
366
+
367
+ # VAE encoding
368
+
369
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
370
+
371
+ if not high_vram:
372
+ load_model_as_complete(vae, target_device=gpu)
373
+
374
+ start_latent = vae_encode(input_image_pt, vae)
375
+
376
+ # CLIP Vision
377
+
378
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
379
+
380
+ if not high_vram:
381
+ load_model_as_complete(image_encoder, target_device=gpu)
382
 
383
+ image_encoder_last_hidden_state = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder).last_hidden_state
384
+
385
+ return [start_latent, image_encoder_last_hidden_state]
386
+
387
+ [start_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram)
388
 
389
  # Dtype
390
 
 
 
 
 
391
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
392
 
393
  # Sampling
 
402
  history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
403
  total_generated_latent_frames = 1
404
 
405
+ if enable_preview:
406
+ def callback(d):
407
+ preview = d['denoised']
408
+ preview = vae_decode_fake(preview)
409
+
410
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
411
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
412
+
413
+ if stream.input_queue.top() == 'end':
414
+ stream.output_queue.push(('end', None))
415
+ raise KeyboardInterrupt('User ends the task.')
416
+
417
+ current_step = d['i'] + 1
418
+ percentage = int(100.0 * current_step / steps)
419
+ hint = f'Sampling {current_step}/{steps}'
420
+ desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
421
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
422
+ return
423
+ else:
424
+ def callback(d):
425
+ return
426
+
427
+ indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
428
+ clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
429
+ clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
430
+
431
+ def post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream):
432
+ total_generated_latent_frames += int(generated_latents.shape[2])
433
+ history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
434
+
435
+ if not high_vram:
436
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
437
+ load_model_as_complete(vae, target_device=gpu)
438
+
439
+ if history_pixels is None:
440
+ real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
441
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
442
+ else:
443
+ section_latent_frames = latent_window_size * 2
444
+ overlapped_frames = latent_window_size * 4 - 3
445
+
446
+ real_history_latents = history_latents[:, :, -min(section_latent_frames, total_generated_latent_frames):, :, :]
447
+ history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents, vae).cpu(), overlapped_frames)
448
+
449
+ if not high_vram:
450
+ unload_complete_models()
451
+
452
+ if enable_preview or section_index == total_latent_sections - 1:
453
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
454
+
455
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
456
+
457
+ print(f'Decoded. Current latent shape pixel shape {history_pixels.shape}')
458
+
459
+ stream.output_queue.push(('file', output_filename))
460
+ return [total_generated_latent_frames, history_latents, history_pixels]
461
+
462
  for section_index in range(total_latent_sections):
463
  if stream.input_queue.top() == 'end':
464
  stream.output_queue.push(('end', None))
 
466
 
467
  print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
468
 
469
+ if len(prompt_parameters) > 0:
470
+ [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0)
471
+
472
  if not high_vram:
473
  unload_complete_models()
474
  move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
 
478
  else:
479
  transformer.initialize_teacache(enable_teacache=False)
480
 
481
+ clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[:, :, -sum([16, 2, 1]):, :, :].split([16, 2, 1], dim=2)
482
+ clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
483
+
484
+ generated_latents = sample_hunyuan(
485
+ transformer=transformer,
486
+ sampler='unipc',
487
+ width=width,
488
+ height=height,
489
+ frames=latent_window_size * 4 - 3,
490
+ real_guidance_scale=cfg,
491
+ distilled_guidance_scale=gs,
492
+ guidance_rescale=rs,
493
+ # shift=3.0,
494
+ num_inference_steps=steps,
495
+ generator=rnd,
496
+ prompt_embeds=llama_vec,
497
+ prompt_embeds_mask=llama_attention_mask,
498
+ prompt_poolers=clip_l_pooler,
499
+ negative_prompt_embeds=llama_vec_n,
500
+ negative_prompt_embeds_mask=llama_attention_mask_n,
501
+ negative_prompt_poolers=clip_l_pooler_n,
502
+ device=gpu,
503
+ dtype=torch.bfloat16,
504
+ image_embeddings=image_encoder_last_hidden_state,
505
+ latent_indices=latent_indices,
506
+ clean_latents=clean_latents,
507
+ clean_latent_indices=clean_latent_indices,
508
+ clean_latents_2x=clean_latents_2x,
509
+ clean_latent_2x_indices=clean_latent_2x_indices,
510
+ clean_latents_4x=clean_latents_4x,
511
+ clean_latent_4x_indices=clean_latent_4x_indices,
512
+ callback=callback,
513
+ )
514
+
515
+ [total_generated_latent_frames, history_latents, history_pixels] = post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream)
516
+ except:
517
+ traceback.print_exc()
518
+
519
+ if not high_vram:
520
+ unload_complete_models(
521
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
522
+ )
523
+
524
+ stream.output_queue.push(('end', None))
525
+ return
526
+
527
+ @torch.no_grad()
528
+ def worker_last_frame(input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf):
529
+ def encode_prompt(prompt, n_prompt):
530
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
531
+
532
+ if cfg == 1:
533
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
534
+ else:
535
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
536
+
537
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
538
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
539
+
540
+ llama_vec = llama_vec.to(transformer.dtype)
541
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
542
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
543
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
544
+ return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
545
+
546
+ total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
547
+ total_latent_sections = int(max(round(total_latent_sections), 1))
548
+
549
+ job_id = generate_timestamp()
550
+
551
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
552
+
553
+ try:
554
+ # Clean GPU
555
+ if not high_vram:
556
+ unload_complete_models(
557
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
558
+ )
559
+
560
+ # Text encoding
561
+
562
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
563
+
564
+ if not high_vram:
565
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
566
+ load_model_as_complete(text_encoder_2, target_device=gpu)
567
+
568
+ prompt_parameters = []
569
+
570
+ for prompt_part in prompts:
571
+ prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
572
+
573
+ # Processing input image
574
+
575
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
576
+
577
+ H, W, C = input_image.shape
578
+ height, width = find_nearest_bucket(H, W, resolution=resolution)
579
+
580
+ def get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram):
581
+ input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
582
+
583
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
584
+
585
+ input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
586
+ input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
587
+
588
+ # VAE encoding
589
+
590
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
591
+
592
+ if not high_vram:
593
+ load_model_as_complete(vae, target_device=gpu)
594
+
595
+ start_latent = vae_encode(input_image_pt, vae)
596
+
597
+ # CLIP Vision
598
+
599
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
600
+
601
+ if not high_vram:
602
+ load_model_as_complete(image_encoder, target_device=gpu)
603
+
604
+ image_encoder_last_hidden_state = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder).last_hidden_state
605
+
606
+ return [start_latent, image_encoder_last_hidden_state]
607
+
608
+ [start_latent, image_encoder_last_hidden_state] = get_start_latent(input_image, height, width, vae, gpu, image_encoder, high_vram)
609
+
610
+ # Dtype
611
+
612
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
613
+
614
+ # Sampling
615
+
616
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
617
+
618
+ rnd = torch.Generator("cpu").manual_seed(seed)
619
+
620
+ history_latents = torch.zeros(size=(1, 16, 16 + 2 + 1, height // 8, width // 8), dtype=torch.float32).cpu()
621
+ history_pixels = None
622
+
623
+ history_latents = torch.cat([start_latent.to(history_latents), history_latents], dim=2)
624
+ total_generated_latent_frames = 1
625
+
626
+ if enable_preview:
627
  def callback(d):
628
  preview = d['denoised']
629
  preview = vae_decode_fake(preview)
630
+
631
  preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
632
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
633
+
634
  if stream.input_queue.top() == 'end':
635
  stream.output_queue.push(('end', None))
636
  raise KeyboardInterrupt('User ends the task.')
637
+
638
  current_step = d['i'] + 1
639
  percentage = int(100.0 * current_step / steps)
640
  hint = f'Sampling {current_step}/{steps}'
641
+ desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30), Resolution: {height}px * {width}px. The video is being extended now ...'
642
  stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
643
  return
644
+ else:
645
+ def callback(d):
646
+ return
647
 
648
+ indices = torch.arange(0, sum([1, 16, 2, 1, latent_window_size])).unsqueeze(0)
649
+ latent_indices, clean_latent_1x_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latent_indices_start = indices.split([latent_window_size, 1, 2, 16, 1], dim=1)
650
+ clean_latent_indices = torch.cat([clean_latent_1x_indices, clean_latent_indices_start], dim=1)
651
 
652
+ def post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream):
653
+ total_generated_latent_frames += int(generated_latents.shape[2])
654
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
655
+
656
+ if not high_vram:
657
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
658
+ load_model_as_complete(vae, target_device=gpu)
659
+
660
+ if history_pixels is None:
661
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
662
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
663
+ else:
664
+ section_latent_frames = latent_window_size * 2
665
+ overlapped_frames = latent_window_size * 4 - 3
666
+
667
+ real_history_latents = history_latents[:, :, :min(section_latent_frames, total_generated_latent_frames), :, :]
668
+ history_pixels = soft_append_bcthw(vae_decode(real_history_latents, vae).cpu(), history_pixels, overlapped_frames)
669
+
670
+ if not high_vram:
671
+ unload_complete_models()
672
+
673
+ if enable_preview or section_index == 0:
674
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
675
+
676
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=mp4_crf)
677
+
678
+ print(f'Decoded. Current latent shape pixel shape {history_pixels.shape}')
679
+
680
+ stream.output_queue.push(('file', output_filename))
681
+ return [total_generated_latent_frames, history_latents, history_pixels]
682
+
683
+ for section_index in range(total_latent_sections - 1, -1, -1):
684
+ if stream.input_queue.top() == 'end':
685
+ stream.output_queue.push(('end', None))
686
+ return
687
+
688
+ print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
689
+
690
+ if len(prompt_parameters) > 0:
691
+ [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(len(prompt_parameters) - 1)
692
+
693
+ if not high_vram:
694
+ unload_complete_models()
695
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
696
+
697
+ if use_teacache:
698
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
699
+ else:
700
+ transformer.initialize_teacache(enable_teacache=False)
701
+
702
+ clean_latents_1x, clean_latents_2x, clean_latents_4x = history_latents[:, :, :sum([1, 2, 16]), :, :].split([1, 2, 16], dim=2)
703
+ clean_latents = torch.cat([clean_latents_1x, start_latent.to(history_latents)], dim=2)
704
 
705
  generated_latents = sample_hunyuan(
706
  transformer=transformer,
 
733
  callback=callback,
734
  )
735
 
736
+ [total_generated_latent_frames, history_latents, history_pixels] = post_process(generated_latents, total_generated_latent_frames, history_latents, high_vram, transformer, gpu, vae, history_pixels, latent_window_size, enable_preview, section_index, total_latent_sections, outputs_folder, mp4_crf, stream)
737
+ except:
738
+ traceback.print_exc()
739
 
740
+ if not high_vram:
741
+ unload_complete_models(
742
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
743
+ )
744
 
745
+ stream.output_queue.push(('end', None))
746
+ return
747
 
748
+ # 20250506 pftq: Modified worker to accept video input and clean frame count
749
+ @spaces.GPU()
750
+ @torch.no_grad()
751
+ def worker_video(input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
752
+ def encode_prompt(prompt, n_prompt):
753
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
754
 
755
+ if cfg == 1:
756
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
757
+ else:
758
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
759
 
760
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
761
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
762
+
763
+ llama_vec = llama_vec.to(transformer.dtype)
764
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
765
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
766
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
767
+ return [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n]
768
+
769
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
770
+
771
+ try:
772
+ # Clean GPU
773
+ if not high_vram:
774
+ unload_complete_models(
775
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
776
+ )
777
+
778
+ # Text encoding
779
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
780
+
781
+ if not high_vram:
782
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
783
+ load_model_as_complete(text_encoder_2, target_device=gpu)
784
+
785
+ prompt_parameters = []
786
+
787
+ for prompt_part in prompts:
788
+ prompt_parameters.append(encode_prompt(prompt_part, n_prompt))
789
+
790
+ # 20250506 pftq: Processing input video instead of image
791
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
792
+
793
+ # 20250506 pftq: Encode video
794
+ start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
795
 
796
+ # CLIP Vision
797
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
798
+
799
+ if not high_vram:
800
+ load_model_as_complete(image_encoder, target_device=gpu)
801
+
802
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
803
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
804
+
805
+ # Dtype
806
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
807
+
808
+ total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
809
+ total_latent_sections = int(max(round(total_latent_sections), 1))
810
+
811
+ if enable_preview:
812
+ def callback(d):
813
+ preview = d['denoised']
814
+ preview = vae_decode_fake(preview)
815
+
816
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
817
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
818
+
819
+ if stream.input_queue.top() == 'end':
820
+ stream.output_queue.push(('end', None))
821
+ raise KeyboardInterrupt('User ends the task.')
822
+
823
+ current_step = d['i'] + 1
824
+ percentage = int(100.0 * current_step / steps)
825
+ hint = f'Sampling {current_step}/{steps}'
826
+ desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Resolution: {height}px * {width}px, Seed: {seed}, Video {idx+1} of {batch}. The video is generating part {section_index+1} of {total_latent_sections}...'
827
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
828
+ return
829
+ else:
830
+ def callback(d):
831
+ return
832
+
833
+ def compute_latent(history_latents, latent_window_size, num_clean_frames, start_latent):
834
+ # 20250506 pftq: Use user-specified number of context frames, matching original allocation for num_clean_frames=2
835
+ available_frames = history_latents.shape[2] # Number of latent frames
836
+ max_pixel_frames = min(latent_window_size * 4 - 3, available_frames * 4) # Cap at available pixel frames
837
+ adjusted_latent_frames = max(1, (max_pixel_frames + 3) // 4) # Convert back to latent frames
838
+ # Adjust num_clean_frames to match original behavior: num_clean_frames=2 means 1 frame for clean_latents_1x
839
+ effective_clean_frames = max(0, num_clean_frames - 1)
840
+ effective_clean_frames = min(effective_clean_frames, available_frames - 2) if available_frames > 2 else 0 # 20250507 pftq: changed 1 to 2 for edge case for <=1 sec videos
841
+ num_2x_frames = min(2, max(1, available_frames - effective_clean_frames - 1)) if available_frames > effective_clean_frames + 1 else 0 # 20250507 pftq: subtracted 1 for edge case for <=1 sec videos
842
+ num_4x_frames = min(16, max(1, available_frames - effective_clean_frames - num_2x_frames)) if available_frames > effective_clean_frames + num_2x_frames else 0 # 20250507 pftq: Edge case for <=1 sec
843
+
844
+ total_context_frames = num_4x_frames + num_2x_frames + effective_clean_frames
845
+ total_context_frames = min(total_context_frames, available_frames) # 20250507 pftq: Edge case for <=1 sec videos
846
+
847
+ indices = torch.arange(0, sum([1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames])).unsqueeze(0) # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
848
+ clean_latent_indices_start, clean_latent_4x_indices, clean_latent_2x_indices, clean_latent_1x_indices, latent_indices = indices.split(
849
+ [1, num_4x_frames, num_2x_frames, effective_clean_frames, adjusted_latent_frames], dim=1 # 20250507 pftq: latent_window_size to adjusted_latent_frames for edge case for <=1 sec videos
850
+ )
851
+ clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
852
+
853
+ # 20250506 pftq: Split history_latents dynamically based on available frames
854
+ fallback_frame_count = 2 # 20250507 pftq: Changed 0 to 2 Edge case for <=1 sec videos
855
+ context_frames = clean_latents_4x = clean_latents_2x = clean_latents_1x = history_latents[:, :, :fallback_frame_count, :, :]
856
+
857
+ if total_context_frames > 0:
858
+ context_frames = history_latents[:, :, -total_context_frames:, :, :]
859
+ split_sizes = [num_4x_frames, num_2x_frames, effective_clean_frames]
860
+ split_sizes = [s for s in split_sizes if s > 0] # Remove zero sizes
861
+ if split_sizes:
862
+ splits = context_frames.split(split_sizes, dim=2)
863
+ split_idx = 0
864
+
865
+ if num_4x_frames > 0:
866
+ clean_latents_4x = splits[split_idx]
867
+ split_idx = 1
868
+ if clean_latents_4x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
869
+ print("Edge case for <=1 sec videos 4x")
870
+ clean_latents_4x = clean_latents_4x.expand(-1, -1, 2, -1, -1)
871
+
872
+ if num_2x_frames > 0 and split_idx < len(splits):
873
+ clean_latents_2x = splits[split_idx]
874
+ if clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
875
+ print("Edge case for <=1 sec videos 2x")
876
+ clean_latents_2x = clean_latents_2x.expand(-1, -1, 2, -1, -1)
877
+ split_idx += 1
878
+ elif clean_latents_2x.shape[2] < 2: # 20250507 pftq: edge case for <=1 sec videos
879
+ clean_latents_2x = clean_latents_4x
880
+
881
+ if effective_clean_frames > 0 and split_idx < len(splits):
882
+ clean_latents_1x = splits[split_idx]
883
+
884
+ clean_latents = torch.cat([start_latent.to(history_latents), clean_latents_1x], dim=2)
885
+
886
+ # 20250507 pftq: Fix for <=1 sec videos.
887
+ max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
888
+ return [max_frames, clean_latents, clean_latents_2x, clean_latents_4x, latent_indices, clean_latents, clean_latent_indices, clean_latent_2x_indices, clean_latent_4x_indices]
889
+
890
+ for idx in range(batch):
891
+ if batch > 1:
892
+ print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
893
+
894
+ #job_id = generate_timestamp()
895
+ job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepackf1-videoinput_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}" # 20250506 pftq: easier to read timestamp and filename
896
 
897
+ # Sampling
898
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
899
 
900
+ rnd = torch.Generator("cpu").manual_seed(seed)
901
+
902
+ # 20250506 pftq: Initialize history_latents with video latents
903
+ history_latents = video_latents.cpu()
904
+ total_generated_latent_frames = history_latents.shape[2]
905
+ # 20250506 pftq: Initialize history_pixels to fix UnboundLocalError
906
+ history_pixels = None
907
+ previous_video = None
908
+
909
+ for section_index in range(total_latent_sections):
910
+ if stream.input_queue.top() == 'end':
911
+ stream.output_queue.push(('end', None))
912
+ return
913
+
914
+ print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
915
+
916
+ if len(prompt_parameters) > 0:
917
+ [llama_vec, clip_l_pooler, llama_vec_n, clip_l_pooler_n, llama_attention_mask, llama_attention_mask_n] = prompt_parameters.pop(0)
918
+
919
+ if not high_vram:
920
+ unload_complete_models()
921
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
922
+
923
+ if use_teacache:
924
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
925
+ else:
926
+ transformer.initialize_teacache(enable_teacache=False)
927
+
928
+ [max_frames, clean_latents, clean_latents_2x, clean_latents_4x, latent_indices, clean_latents, clean_latent_indices, clean_latent_2x_indices, clean_latent_4x_indices] = compute_latent(history_latents, latent_window_size, num_clean_frames, start_latent)
929
+
930
+ generated_latents = sample_hunyuan(
931
+ transformer=transformer,
932
+ sampler='unipc',
933
+ width=width,
934
+ height=height,
935
+ frames=max_frames,
936
+ real_guidance_scale=cfg,
937
+ distilled_guidance_scale=gs,
938
+ guidance_rescale=rs,
939
+ num_inference_steps=steps,
940
+ generator=rnd,
941
+ prompt_embeds=llama_vec,
942
+ prompt_embeds_mask=llama_attention_mask,
943
+ prompt_poolers=clip_l_pooler,
944
+ negative_prompt_embeds=llama_vec_n,
945
+ negative_prompt_embeds_mask=llama_attention_mask_n,
946
+ negative_prompt_poolers=clip_l_pooler_n,
947
+ device=gpu,
948
+ dtype=torch.bfloat16,
949
+ image_embeddings=image_encoder_last_hidden_state,
950
+ latent_indices=latent_indices,
951
+ clean_latents=clean_latents,
952
+ clean_latent_indices=clean_latent_indices,
953
+ clean_latents_2x=clean_latents_2x,
954
+ clean_latent_2x_indices=clean_latent_2x_indices,
955
+ clean_latents_4x=clean_latents_4x,
956
+ clean_latent_4x_indices=clean_latent_4x_indices,
957
+ callback=callback,
958
+ )
959
+
960
+ total_generated_latent_frames += int(generated_latents.shape[2])
961
+ history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
962
+
963
+ if not high_vram:
964
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
965
+ load_model_as_complete(vae, target_device=gpu)
966
+
967
+ real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
968
+
969
+ if history_pixels is None:
970
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
971
+ else:
972
+ section_latent_frames = latent_window_size * 2
973
+ overlapped_frames = min(latent_window_size * 4 - 3, history_pixels.shape[2])
974
+
975
+ history_pixels = soft_append_bcthw(history_pixels, vae_decode(real_history_latents[:, :, -section_latent_frames:], vae).cpu(), overlapped_frames)
976
+
977
+ if not high_vram:
978
+ unload_complete_models()
979
+
980
+ if enable_preview or section_index == total_latent_sections - 1:
981
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
982
+
983
+ # 20250506 pftq: Use input video FPS for output
984
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
985
+ print(f"Latest video saved: {output_filename}")
986
+ # 20250508 pftq: Save prompt to mp4 metadata comments
987
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompts} | Negative Prompt: {n_prompt}");
988
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
989
+
990
+ # 20250506 pftq: Clean up previous partial files
991
+ if previous_video is not None and os.path.exists(previous_video):
992
+ try:
993
+ os.remove(previous_video)
994
+ print(f"Previous partial video deleted: {previous_video}")
995
+ except Exception as e:
996
+ print(f"Error deleting previous partial video {previous_video}: {e}")
997
+ previous_video = output_filename
998
+
999
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
1000
+
1001
+ stream.output_queue.push(('file', output_filename))
1002
+
1003
+ seed = (seed + 1) % np.iinfo(np.int32).max
1004
 
 
1005
  except:
1006
  traceback.print_exc()
1007
 
 
1013
  stream.output_queue.push(('end', None))
1014
  return
1015
 
1016
+ def get_duration(input_image, image_position, prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf, progress = None):
1017
+ return total_second_length * 60 * (0.9 if use_teacache else 1.5) * (1 + ((steps - 25) / 100))
1018
 
1019
  @spaces.GPU(duration=get_duration)
1020
+ def process(input_image,
1021
+ image_position=0,
1022
+ prompt="",
1023
+ generation_mode="image",
1024
+ n_prompt="",
1025
+ randomize_seed=True,
1026
+ seed=31337,
1027
+ resolution=640,
1028
+ total_second_length=5,
1029
+ latent_window_size=9,
1030
+ steps=25,
1031
+ cfg=1.0,
1032
+ gs=10.0,
1033
+ rs=0.0,
1034
+ gpu_memory_preservation=6,
1035
+ enable_preview=True,
1036
+ use_teacache=False,
1037
+ mp4_crf=16,
1038
+ progress = gr.Progress()
1039
  ):
1040
+ start = time.time()
1041
  global stream
1042
+
1043
+ if torch.cuda.device_count() == 0:
1044
+ gr.Warning('Set this space to GPU config to make it work.')
1045
+ yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
1046
+ return
1047
+
1048
+ if randomize_seed:
1049
+ seed = random.randint(0, np.iinfo(np.int32).max)
1050
+
1051
+ prompts = prompt.split(";")
1052
+
1053
  # assert input_image is not None, 'No input image!'
1054
+ if generation_mode == "text":
1055
  default_height, default_width = 640, 640
1056
  input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
1057
  print("No input image provided. Using a blank white image.")
 
 
1058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
  yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
1060
 
1061
  stream = AsyncStream()
1062
 
1063
+ async_run(worker_last_frame if image_position == 100 else worker, input_image, prompts, n_prompt, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf)
1064
 
1065
  output_filename = None
1066
 
 
1073
 
1074
  if flag == 'progress':
1075
  preview, desc, html = data
1076
+ progress(None, desc = desc)
1077
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
1078
 
1079
  if flag == 'end':
1080
+ end = time.time()
1081
+ secondes = int(end - start)
1082
+ minutes = math.floor(secondes / 60)
1083
+ secondes = secondes - (minutes * 60)
1084
+ hours = math.floor(minutes / 60)
1085
+ minutes = minutes - (hours * 60)
1086
+ yield output_filename, gr.update(visible=False), gr.update(), "The video has been generated in " + \
1087
+ ((str(hours) + " h, ") if hours != 0 else "") + \
1088
+ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
1089
+ str(secondes) + " sec. " + \
1090
+ "You can upscale the result with RIFE. To make all your generated scenes consistent, you can then apply a face swap on the main character.", gr.update(interactive=True), gr.update(interactive=False)
1091
  break
1092
 
1093
+ def get_duration_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch, progress = None):
1094
+ return total_second_length * 60 * (0.9 if use_teacache else 2.3) * (1 + ((steps - 25) / 100))
1095
+
1096
+ # 20250506 pftq: Modified process to pass clean frame count, etc from video_encode
1097
+ @spaces.GPU(duration=get_duration_video)
1098
+ def process_video(input_video, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch,
1099
+ progress = gr.Progress()):
1100
+ start = time.time()
1101
+ global stream, high_vram
1102
+
1103
+ if torch.cuda.device_count() == 0:
1104
+ gr.Warning('Set this space to GPU config to make it work.')
1105
+ yield gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
1106
+ return
1107
+
1108
+ if randomize_seed:
1109
+ seed = random.randint(0, np.iinfo(np.int32).max)
1110
+
1111
+ prompts = prompt.split(";")
1112
+
1113
+ # 20250506 pftq: Updated assertion for video input
1114
+ assert input_video is not None, 'No input video!'
1115
+
1116
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
1117
+
1118
+ # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
1119
+ if high_vram and (no_resize or resolution>640):
1120
+ print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
1121
+ high_vram = False
1122
+ vae.enable_slicing()
1123
+ vae.enable_tiling()
1124
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
1125
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
1126
+
1127
+ # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
1128
+ if cfg > 1:
1129
+ gs = 1
1130
+
1131
+ stream = AsyncStream()
1132
+
1133
+ # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
1134
+ async_run(worker_video, input_video, prompts, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
1135
+
1136
+ output_filename = None
1137
+
1138
+ while True:
1139
+ flag, data = stream.output_queue.next()
1140
+
1141
+ if flag == 'file':
1142
+ output_filename = data
1143
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
1144
+
1145
+ if flag == 'progress':
1146
+ preview, desc, html = data
1147
+ progress(None, desc = desc)
1148
+ #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
1149
+ yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
1150
+
1151
+ if flag == 'end':
1152
+ end = time.time()
1153
+ secondes = int(end - start)
1154
+ minutes = math.floor(secondes / 60)
1155
+ secondes = secondes - (minutes * 60)
1156
+ hours = math.floor(minutes / 60)
1157
+ minutes = minutes - (hours * 60)
1158
+ yield output_filename, gr.update(visible=False), desc + \
1159
+ " The video has been generated in " + \
1160
+ ((str(hours) + " h, ") if hours != 0 else "") + \
1161
+ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
1162
+ str(secondes) + " sec. " + \
1163
+ " Video complete. You can upscale the result with RIFE. To make all your generated scenes consistent, you can then apply a face swap on the main character.", '', gr.update(interactive=True), gr.update(interactive=False)
1164
+ break
1165
 
1166
  def end_process():
1167
  stream.input_queue.push('end')
1168
 
1169
+ timeless_prompt_value = [""]
1170
+ timed_prompts = {}
1171
+
1172
+ def handle_prompt_number_change():
1173
+ timed_prompts.clear()
1174
+ return []
1175
+
1176
+ def handle_timeless_prompt_change(timeless_prompt):
1177
+ timeless_prompt_value[0] = timeless_prompt
1178
+ return refresh_prompt()
1179
 
1180
+ def handle_timed_prompt_change(timed_prompt_id, timed_prompt):
1181
+ timed_prompts[timed_prompt_id] = timed_prompt
1182
+ return refresh_prompt()
 
 
1183
 
1184
+ def refresh_prompt():
1185
+ dict_values = {k: v for k, v in timed_prompts.items()}
1186
+ sorted_dict_values = sorted(dict_values.items(), key=lambda x: x[0])
1187
+ array = []
1188
+ for sorted_dict_value in sorted_dict_values:
1189
+ if timeless_prompt_value[0] is not None and len(timeless_prompt_value[0]) and sorted_dict_value[1] is not None and len(sorted_dict_value[1]):
1190
+ array.append(timeless_prompt_value[0] + ". " + sorted_dict_value[1])
1191
+ else:
1192
+ array.append(timeless_prompt_value[0] + sorted_dict_value[1])
1193
+ print(str(array))
1194
+ return ";".join(array)
1195
+
1196
+ title_html = """
1197
+ <h1><center>FramePack</center></h1>
1198
+ <big><center>Generate videos from text/image/video freely, without account, without watermark and download it</center></big>
1199
+ <br/>
1200
+
1201
+ <p>This space is ready to work on ZeroGPU and GPU and has been tested successfully on ZeroGPU. Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">message in discussion</a> if you encounter issues.</p>
1202
+ """
1203
+
1204
+ js = """
1205
+ function createGradioAnimation() {
1206
+ window.addEventListener("beforeunload", function (e) {
1207
+ if (document.getElementById('end-button') && !document.getElementById('end-button').disabled) {
1208
+ var confirmationMessage = 'A process is still running. '
1209
+ + 'If you leave before saving, your changes will be lost.';
1210
+
1211
+ (e || window.event).returnValue = confirmationMessage;
1212
+ }
1213
+ return confirmationMessage;
1214
+ });
1215
+ return 'Animation created';
1216
+ }
1217
+ """
1218
 
1219
  css = make_progress_bar_css()
1220
+ block = gr.Blocks(css=css, js=js).queue()
1221
  with block:
1222
+ if torch.cuda.device_count() == 0:
1223
+ with gr.Row():
1224
+ gr.HTML("""
1225
+ <p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
1226
+
1227
+ You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/FramePack/discussions/new">feedback</a> if you have issues.
1228
+ </big></big></big></p>
1229
  """)
1230
+ gr.HTML(title_html)
1231
+ local_storage = gr.BrowserState(default_local_storage)
1232
  with gr.Row():
1233
  with gr.Column():
1234
+ generation_mode = gr.Radio([["Text-to-Video", "text"], ["Image-to-Video", "image"], ["Video Extension", "video"]], elem_id="generation-mode", label="Generation mode", value = "image")
1235
+ text_to_video_hint = gr.HTML("I discourage to use the Text-to-Video feature. You should rather generate an image with Flux and use Image-to-Video. You will save time.")
1236
+ input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
1237
+ image_position = gr.Slider(label="Image position", minimum=0, maximum=100, value=0, step=100, info='0=Video start; 100=Video end')
1238
+ input_video = gr.Video(sources='upload', label="Input Video", height=320)
1239
+ timeless_prompt = gr.Textbox(label="Timeless prompt", info='Used on the whole duration of the generation', value='', placeholder="The creature starts to move, fast motion, fixed camera, focus motion, consistent arm, consistent position, mute colors, insanely detailed")
1240
+ prompt_number = gr.Slider(label="Timed prompt number", minimum=0, maximum=1000, value=0, step=1, info='Prompts will automatically appear')
1241
+
1242
+ @gr.render(inputs=prompt_number)
1243
+ def show_split(prompt_number):
1244
+ for digit in range(prompt_number):
1245
+ timed_prompt_id = gr.Textbox(value="timed_prompt_" + str(digit), visible=False)
1246
+ timed_prompt = gr.Textbox(label="Timed prompt #" + str(digit + 1), elem_id="timed_prompt_" + str(digit), value="")
1247
+ timed_prompt.change(fn=handle_timed_prompt_change, inputs=[timed_prompt_id, timed_prompt], outputs=[final_prompt])
1248
+
1249
+ final_prompt = gr.Textbox(label="Final prompt", value='', info='Use ; to separate in time')
1250
+ prompt_hint = gr.HTML("Video extension barely follows the prompt; to force to follow the prompt, you have to set the Distilled CFG Scale to 3.0 and the Context Frames to 2 but the video quality will be poor.")
1251
+ total_second_length = gr.Slider(label="Video Length to Generate (seconds)", minimum=1, maximum=120, value=2, step=0.1)
1252
 
1253
  with gr.Row():
1254
+ start_button = gr.Button(value="🎥 Generate", variant="primary")
1255
+ start_button_video = gr.Button(value="🎥 Generate", variant="primary")
1256
+ end_button = gr.Button(elem_id="end-button", value="End Generation", variant="stop", interactive=False)
1257
 
1258
+ with gr.Accordion("Advanced settings", open=False):
1259
+ enable_preview = gr.Checkbox(label='Enable preview', value=True, info='Display a preview around each second generated but it costs 2 sec. for each second generated.')
1260
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=False, info='Faster speed and no break in brightness, but often makes hands and fingers slightly worse.')
1261
+
1262
+ n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
1263
+
1264
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, info='Generate more frames at a time (larger chunks). Less degradation and better blending but higher VRAM cost. Should not change.')
1265
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Increase for more quality, especially if using high non-distilled CFG. If your animation has very few motion, you may have brutal brightness change; this can be fixed increasing the steps.')
1266
+
1267
+ with gr.Row():
1268
+ no_resize = gr.Checkbox(label='Force Original Video Resolution (no Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
1269
+ resolution = gr.Dropdown([
1270
+ ["409,600 px (working)", 640],
1271
+ ["451,584 px (working)", 672],
1272
+ ["495,616 px (VRAM pb on HF)", 704],
1273
+ ["589,824 px (not tested)", 768],
1274
+ ["692,224 px (not tested)", 832],
1275
+ ["746,496 px (not tested)", 864],
1276
+ ["921,600 px (not tested)", 960]
1277
+ ], value=672, label="Resolution (width x height)", info="Do not affect the generation time")
1278
+
1279
+ # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
1280
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use this instead of Distilled for more detail/control + Negative Prompt (make sure Distilled set to 1). Doubles render time. Should not change.')
1281
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames; 3=follow the prompt but blurred motions & unsharped, 10=focus motion; changing this value is not recommended')
1282
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, info='Should not change')
1283
+
1284
+
1285
+ # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
1286
+ num_clean_frames = gr.Slider(label="Number of Context Frames", minimum=2, maximum=10, value=5, step=1, info="Retain more video details but increase memory use. Reduce to 2 to avoid memory issues or to give more weight to the prompt.")
1287
+
1288
+ default_vae = 32
1289
+ if high_vram:
1290
+ default_vae = 128
1291
+ elif free_mem_gb>=20:
1292
+ default_vae = 64
1293
+
1294
+ vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Reduce if running out of memory. Increase for better quality frames during fast motion.")
1295
+
1296
+
1297
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
1298
+
1299
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
1300
+ batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
1301
+ with gr.Row():
1302
+ randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
1303
+ seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
1304
 
1305
  with gr.Column():
1306
  preview_image = gr.Image(label="Next Latents", height=200, visible=False)
 
1308
  progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
1309
  progress_bar = gr.HTML('', elem_classes='no-generating-animation')
1310
 
1311
+ # 20250506 pftq: Updated inputs to include num_clean_frames
1312
+ ips = [input_image, image_position, final_prompt, generation_mode, n_prompt, randomize_seed, seed, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, mp4_crf]
1313
+ ips_video = [input_video, final_prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, enable_preview, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
1314
+
1315
+ gr.Examples(
1316
+ label = "Examples from image",
1317
+ examples = [
1318
+ [
1319
+ "./img_examples/Example1.png", # input_image
1320
+ 0, # image_position
1321
+ "A dolphin emerges from the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
1322
+ "image", # generation_mode
1323
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1324
+ True, # randomize_seed
1325
+ 42, # seed
1326
+ 672, # resolution
1327
+ 1, # total_second_length
1328
+ 9, # latent_window_size
1329
+ 25, # steps
1330
+ 1.0, # cfg
1331
+ 10.0, # gs
1332
+ 0.0, # rs
1333
+ 6, # gpu_memory_preservation
1334
+ False, # enable_preview
1335
+ True, # use_teacache
1336
+ 16 # mp4_crf
1337
+ ],
1338
+ [
1339
+ "./img_examples/Example2.webp", # input_image
1340
+ 0, # image_position
1341
+ "A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens",
1342
+ "image", # generation_mode
1343
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1344
+ True, # randomize_seed
1345
+ 42, # seed
1346
+ 672, # resolution
1347
+ 2, # total_second_length
1348
+ 9, # latent_window_size
1349
+ 25, # steps
1350
+ 1.0, # cfg
1351
+ 10.0, # gs
1352
+ 0.0, # rs
1353
+ 6, # gpu_memory_preservation
1354
+ False, # enable_preview
1355
+ True, # use_teacache
1356
+ 16 # mp4_crf
1357
+ ],
1358
+ [
1359
+ "./img_examples/Example2.webp", # input_image
1360
+ 0, # image_position
1361
+ "A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The woman talks and the man listens; A man on the left and a woman on the right face each other ready to start a conversation, large space between the persons, full view, full-length view, 3D, pixar, 3D render, CGI. The man talks and the woman listens",
1362
+ "image", # generation_mode
1363
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1364
+ True, # randomize_seed
1365
+ 42, # seed
1366
+ 672, # resolution
1367
+ 2, # total_second_length
1368
+ 9, # latent_window_size
1369
+ 25, # steps
1370
+ 1.0, # cfg
1371
+ 10.0, # gs
1372
+ 0.0, # rs
1373
+ 6, # gpu_memory_preservation
1374
+ False, # enable_preview
1375
+ True, # use_teacache
1376
+ 16 # mp4_crf
1377
+ ],
1378
+ [
1379
+ "./img_examples/Example3.jpg", # input_image
1380
+ 0, # image_position
1381
+ "A boy is walking to the right, full view, full-length view, cartoon",
1382
+ "image", # generation_mode
1383
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1384
+ True, # randomize_seed
1385
+ 42, # seed
1386
+ 672, # resolution
1387
+ 1, # total_second_length
1388
+ 9, # latent_window_size
1389
+ 25, # steps
1390
+ 1.0, # cfg
1391
+ 10.0, # gs
1392
+ 0.0, # rs
1393
+ 6, # gpu_memory_preservation
1394
+ False, # enable_preview
1395
+ True, # use_teacache
1396
+ 16 # mp4_crf
1397
+ ]
1398
+ ],
1399
+ run_on_click = True,
1400
+ fn = process,
1401
+ inputs = ips,
1402
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
1403
+ cache_examples = False,
1404
+ )
1405
+
1406
+ gr.Examples(
1407
+ label = "Examples from video",
1408
+ examples = [
1409
+ [
1410
+ "./img_examples/Example1.mp4", # input_video
1411
+ "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
1412
+ "Missing arm, unrealistic position, impossible contortion, visible bone, muscle contraction, blurred, blurry", # n_prompt
1413
+ True, # randomize_seed
1414
+ 42, # seed
1415
+ 1, # batch
1416
+ 672, # resolution
1417
+ 1, # total_second_length
1418
+ 9, # latent_window_size
1419
+ 25, # steps
1420
+ 1.0, # cfg
1421
+ 10.0, # gs
1422
+ 0.0, # rs
1423
+ 6, # gpu_memory_preservation
1424
+ False, # enable_preview
1425
+ True, # use_teacache
1426
+ False, # no_resize
1427
+ 16, # mp4_crf
1428
+ 5, # num_clean_frames
1429
+ default_vae
1430
+ ]
1431
+ ],
1432
+ run_on_click = True,
1433
+ fn = process_video,
1434
+ inputs = ips_video,
1435
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button],
1436
+ cache_examples = False,
1437
+ )
1438
+
1439
+ def save_preferences(preferences, value):
1440
+ preferences["generation-mode"] = value
1441
+ return preferences
1442
+
1443
+ def load_preferences(saved_prefs):
1444
+ saved_prefs = init_preferences(saved_prefs)
1445
+ return saved_prefs["generation-mode"]
1446
+
1447
+ def init_preferences(saved_prefs):
1448
+ if saved_prefs is None:
1449
+ saved_prefs = default_local_storage
1450
+ return saved_prefs
1451
+
1452
+ def check_parameters(generation_mode, input_image, input_video):
1453
+ if generation_mode == "image" and input_image is None:
1454
+ raise gr.Error("Please provide an image to extend.")
1455
+ if generation_mode == "video" and input_video is None:
1456
+ raise gr.Error("Please provide a video to extend.")
1457
+ return gr.update(interactive=True)
1458
+
1459
+ def handle_generation_mode_change(generation_mode_data):
1460
+ if generation_mode_data == "text":
1461
+ return [gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
1462
+ elif generation_mode_data == "image":
1463
+ return [gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = False)]
1464
+ elif generation_mode_data == "video":
1465
+ return [gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True), gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True)]
1466
+
1467
+ prompt_number.change(fn=handle_prompt_number_change, inputs=[], outputs=[])
1468
+ timeless_prompt.change(fn=handle_timeless_prompt_change, inputs=[timeless_prompt], outputs=[final_prompt])
1469
+ start_button.click(fn = check_parameters, inputs = [
1470
+ generation_mode, input_image, input_video
1471
+ ], outputs = [end_button], queue = False, show_progress = False).success(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
1472
+ start_button_video.click(fn = check_parameters, inputs = [
1473
+ generation_mode, input_image, input_video
1474
+ ], outputs = [end_button], queue = False, show_progress = False).success(fn=process_video, inputs=ips_video, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button_video, end_button])
1475
  end_button.click(fn=end_process)
1476
 
1477
+ generation_mode.change(fn = save_preferences, inputs = [
1478
+ local_storage,
1479
+ generation_mode,
1480
+ ], outputs = [
1481
+ local_storage
1482
+ ])
1483
+
1484
+ generation_mode.change(
1485
+ fn=handle_generation_mode_change,
1486
+ inputs=[generation_mode],
1487
+ outputs=[text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint]
1488
+ )
1489
+
1490
+ # Update display when the page loads
1491
+ block.load(
1492
+ fn=handle_generation_mode_change, inputs = [
1493
+ generation_mode
1494
+ ], outputs = [
1495
+ text_to_video_hint, image_position, input_image, input_video, start_button, start_button_video, no_resize, batch, num_clean_frames, vae_batch, prompt_hint
1496
+ ]
1497
+ )
1498
+
1499
+ # Load saved preferences when the page loads
1500
+ block.load(
1501
+ fn=load_preferences, inputs = [
1502
+ local_storage
1503
+ ], outputs = [
1504
+ generation_mode
1505
+ ]
1506
+ )
1507
+
1508
+ block.launch(mcp_server=True, ssr_mode=False)
app_endframe.py ADDED
@@ -0,0 +1,898 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers_helper.hf_login import login
2
+
3
+ import os
4
+
5
+ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
6
+
7
+ import gradio as gr
8
+ import torch
9
+ import traceback
10
+ import einops
11
+ import safetensors.torch as sf
12
+ import numpy as np
13
+ import argparse
14
+ import random
15
+ import math
16
+ # 20250506 pftq: Added for video input loading
17
+ import decord
18
+ # 20250506 pftq: Added for progress bars in video_encode
19
+ from tqdm import tqdm
20
+ # 20250506 pftq: Normalize file paths for Windows compatibility
21
+ import pathlib
22
+ # 20250506 pftq: for easier to read timestamp
23
+ from datetime import datetime
24
+ # 20250508 pftq: for saving prompt to mp4 comments metadata
25
+ import imageio_ffmpeg
26
+ import tempfile
27
+ import shutil
28
+ import subprocess
29
+ import spaces
30
+ from PIL import Image
31
+ from diffusers import AutoencoderKLHunyuanVideo
32
+ from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
33
+ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
34
+ from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
35
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
36
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
37
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
38
+ from diffusers_helper.thread_utils import AsyncStream, async_run
39
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
40
+ from transformers import SiglipImageProcessor, SiglipVisionModel
41
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
42
+ from diffusers_helper.bucket_tools import find_nearest_bucket
43
+
44
+ parser = argparse.ArgumentParser()
45
+ parser.add_argument('--share', action='store_true')
46
+ parser.add_argument("--server", type=str, default='0.0.0.0')
47
+ parser.add_argument("--port", type=int, required=False)
48
+ parser.add_argument("--inbrowser", action='store_true')
49
+ args = parser.parse_args()
50
+
51
+ print(args)
52
+
53
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
54
+ high_vram = free_mem_gb > 60
55
+
56
+ print(f'Free VRAM {free_mem_gb} GB')
57
+ print(f'High-VRAM Mode: {high_vram}')
58
+
59
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
60
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
61
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
62
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
63
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
64
+
65
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
66
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
67
+
68
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
69
+
70
+ vae.eval()
71
+ text_encoder.eval()
72
+ text_encoder_2.eval()
73
+ image_encoder.eval()
74
+ transformer.eval()
75
+
76
+ if not high_vram:
77
+ vae.enable_slicing()
78
+ vae.enable_tiling()
79
+
80
+ transformer.high_quality_fp32_output_for_inference = True
81
+ print('transformer.high_quality_fp32_output_for_inference = True')
82
+
83
+ transformer.to(dtype=torch.bfloat16)
84
+ vae.to(dtype=torch.float16)
85
+ image_encoder.to(dtype=torch.float16)
86
+ text_encoder.to(dtype=torch.float16)
87
+ text_encoder_2.to(dtype=torch.float16)
88
+
89
+ vae.requires_grad_(False)
90
+ text_encoder.requires_grad_(False)
91
+ text_encoder_2.requires_grad_(False)
92
+ image_encoder.requires_grad_(False)
93
+ transformer.requires_grad_(False)
94
+
95
+ if not high_vram:
96
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
97
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
98
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
99
+ else:
100
+ text_encoder.to(gpu)
101
+ text_encoder_2.to(gpu)
102
+ image_encoder.to(gpu)
103
+ vae.to(gpu)
104
+ transformer.to(gpu)
105
+
106
+ stream = AsyncStream()
107
+
108
+ outputs_folder = './outputs/'
109
+ os.makedirs(outputs_folder, exist_ok=True)
110
+
111
+ input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
112
+
113
+ # 20250506 pftq: Added function to encode input video frames into latents
114
+ @torch.no_grad()
115
+ def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
116
+ """
117
+ Encode a video into latent representations using the VAE.
118
+
119
+ Args:
120
+ video_path: Path to the input video file.
121
+ vae: AutoencoderKLHunyuanVideo model.
122
+ height, width: Target resolution for resizing frames.
123
+ vae_batch_size: Number of frames to process per batch.
124
+ device: Device for computation (e.g., "cuda").
125
+
126
+ Returns:
127
+ start_latent: Latent of the first frame (for compatibility with original code).
128
+ input_image_np: First frame as numpy array (for CLIP vision encoding).
129
+ history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
130
+ fps: Frames per second of the input video.
131
+ """
132
+ # 20250506 pftq: Normalize video path for Windows compatibility
133
+ video_path = str(pathlib.Path(video_path).resolve())
134
+ print(f"Processing video: {video_path}")
135
+
136
+ # 20250506 pftq: Check CUDA availability and fallback to CPU if needed
137
+ if device == "cuda" and not torch.cuda.is_available():
138
+ print("CUDA is not available, falling back to CPU")
139
+ device = "cpu"
140
+
141
+ try:
142
+ # 20250506 pftq: Load video and get FPS
143
+ print("Initializing VideoReader...")
144
+ vr = decord.VideoReader(video_path)
145
+ fps = vr.get_avg_fps() # Get input video FPS
146
+ num_real_frames = len(vr)
147
+ print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
148
+
149
+ # Truncate to nearest latent size (multiple of 4)
150
+ latent_size_factor = 4
151
+ num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
152
+ if num_frames != num_real_frames:
153
+ print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
154
+ num_real_frames = num_frames
155
+
156
+ # 20250506 pftq: Read frames
157
+ print("Reading video frames...")
158
+ frames = vr.get_batch(range(num_real_frames)).asnumpy() # Shape: (num_real_frames, height, width, channels)
159
+ print(f"Frames read: {frames.shape}")
160
+
161
+ # 20250506 pftq: Get native video resolution
162
+ native_height, native_width = frames.shape[1], frames.shape[2]
163
+ print(f"Native video resolution: {native_width}x{native_height}")
164
+
165
+ # 20250506 pftq: Use native resolution if height/width not specified, otherwise use provided values
166
+ target_height = native_height if height is None else height
167
+ target_width = native_width if width is None else width
168
+
169
+ # 20250506 pftq: Adjust to nearest bucket for model compatibility
170
+ if not no_resize:
171
+ target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
172
+ print(f"Adjusted resolution: {target_width}x{target_height}")
173
+ else:
174
+ print(f"Using native resolution without resizing: {target_width}x{target_height}")
175
+
176
+ # 20250506 pftq: Preprocess frames to match original image processing
177
+ processed_frames = []
178
+ for i, frame in enumerate(frames):
179
+ #print(f"Preprocessing frame {i+1}/{num_frames}")
180
+ frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
181
+ processed_frames.append(frame_np)
182
+ processed_frames = np.stack(processed_frames) # Shape: (num_real_frames, height, width, channels)
183
+ print(f"Frames preprocessed: {processed_frames.shape}")
184
+
185
+ # 20250506 pftq: Save first frame for CLIP vision encoding
186
+ input_image_np = processed_frames[0]
187
+ end_of_input_video_image_np = processed_frames[-1]
188
+
189
+ # 20250506 pftq: Convert to tensor and normalize to [-1, 1]
190
+ print("Converting frames to tensor...")
191
+ frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
192
+ frames_pt = frames_pt.permute(0, 3, 1, 2) # Shape: (num_real_frames, channels, height, width)
193
+ frames_pt = frames_pt.unsqueeze(0) # Shape: (1, num_real_frames, channels, height, width)
194
+ frames_pt = frames_pt.permute(0, 2, 1, 3, 4) # Shape: (1, channels, num_real_frames, height, width)
195
+ print(f"Tensor shape: {frames_pt.shape}")
196
+
197
+ # 20250507 pftq: Save pixel frames for use in worker
198
+ input_video_pixels = frames_pt.cpu()
199
+
200
+ # 20250506 pftq: Move to device
201
+ print(f"Moving tensor to device: {device}")
202
+ frames_pt = frames_pt.to(device)
203
+ print("Tensor moved to device")
204
+
205
+ # 20250506 pftq: Move VAE to device
206
+ print(f"Moving VAE to device: {device}")
207
+ vae.to(device)
208
+ print("VAE moved to device")
209
+
210
+ # 20250506 pftq: Encode frames in batches
211
+ print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
212
+ latents = []
213
+ vae.eval()
214
+ with torch.no_grad():
215
+ for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
216
+ #print(f"Encoding batch {i//vae_batch_size + 1}: frames {i} to {min(i + vae_batch_size, frames_pt.shape[2])}")
217
+ batch = frames_pt[:, :, i:i + vae_batch_size] # Shape: (1, channels, batch_size, height, width)
218
+ try:
219
+ # 20250506 pftq: Log GPU memory before encoding
220
+ if device == "cuda":
221
+ free_mem = torch.cuda.memory_allocated() / 1024**3
222
+ #print(f"GPU memory before encoding: {free_mem:.2f} GB")
223
+ batch_latent = vae_encode(batch, vae)
224
+ # 20250506 pftq: Synchronize CUDA to catch issues
225
+ if device == "cuda":
226
+ torch.cuda.synchronize()
227
+ #print(f"GPU memory after encoding: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
228
+ latents.append(batch_latent)
229
+ #print(f"Batch encoded, latent shape: {batch_latent.shape}")
230
+ except RuntimeError as e:
231
+ print(f"Error during VAE encoding: {str(e)}")
232
+ if device == "cuda" and "out of memory" in str(e).lower():
233
+ print("CUDA out of memory, try reducing vae_batch_size or using CPU")
234
+ raise
235
+
236
+ # 20250506 pftq: Concatenate latents
237
+ print("Concatenating latents...")
238
+ history_latents = torch.cat(latents, dim=2) # Shape: (1, channels, frames, height//8, width//8)
239
+ print(f"History latents shape: {history_latents.shape}")
240
+
241
+ # 20250506 pftq: Get first frame's latent
242
+ start_latent = history_latents[:, :, :1] # Shape: (1, channels, 1, height//8, width//8)
243
+ end_of_input_video_latent = history_latents[:, :, -1:] # Shape: (1, channels, 1, height//8, width//8)
244
+ print(f"Start latent shape: {start_latent.shape}")
245
+
246
+ # 20250506 pftq: Move VAE back to CPU to free GPU memory
247
+ if device == "cuda":
248
+ vae.to(cpu)
249
+ torch.cuda.empty_cache()
250
+ print("VAE moved back to CPU, CUDA cache cleared")
251
+
252
+ return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
253
+
254
+ except Exception as e:
255
+ print(f"Error in video_encode: {str(e)}")
256
+ raise
257
+
258
+
259
+ # 20250507 pftq: New function to encode a single image (end frame)
260
+ @torch.no_grad()
261
+ def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
262
+ """
263
+ Encode a single image into a latent and compute its CLIP vision embedding.
264
+
265
+ Args:
266
+ image_np: Input image as numpy array.
267
+ target_width, target_height: Exact resolution to resize the image to (matches start frame).
268
+ vae: AutoencoderKLHunyuanVideo model.
269
+ image_encoder: SiglipVisionModel for CLIP vision encoding.
270
+ feature_extractor: SiglipImageProcessor for preprocessing.
271
+ device: Device for computation (e.g., "cuda").
272
+
273
+ Returns:
274
+ latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
275
+ clip_embedding: CLIP vision embedding of the image.
276
+ processed_image_np: Processed image as numpy array (after resizing).
277
+ """
278
+ # 20250507 pftq: Process end frame with exact start frame dimensions
279
+ print("Processing end frame...")
280
+ try:
281
+ print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
282
+
283
+ # Resize and preprocess image to match start frame
284
+ processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
285
+
286
+ # Convert to tensor and normalize
287
+ image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
288
+ image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2) # Shape: [1, channels, 1, height, width]
289
+ image_pt = image_pt.to(device)
290
+
291
+ # Move VAE to device
292
+ vae.to(device)
293
+
294
+ # Encode to latent
295
+ latent = vae_encode(image_pt, vae)
296
+ print(f"image_encode vae output shape: {latent.shape}")
297
+
298
+ # Move image encoder to device
299
+ image_encoder.to(device)
300
+
301
+ # Compute CLIP vision embedding
302
+ clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
303
+
304
+ # Move models back to CPU and clear cache
305
+ if device == "cuda":
306
+ vae.to(cpu)
307
+ image_encoder.to(cpu)
308
+ torch.cuda.empty_cache()
309
+ print("VAE and image encoder moved back to CPU, CUDA cache cleared")
310
+
311
+ print(f"End latent shape: {latent.shape}")
312
+ return latent, clip_embedding, processed_image_np
313
+
314
+ except Exception as e:
315
+ print(f"Error in image_encode: {str(e)}")
316
+ raise
317
+
318
+ # 20250508 pftq: for saving prompt to mp4 metadata comments
319
+ def set_mp4_comments_imageio_ffmpeg(input_file, comments):
320
+ try:
321
+ # Get the path to the bundled FFmpeg binary from imageio-ffmpeg
322
+ ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
323
+
324
+ # Check if input file exists
325
+ if not os.path.exists(input_file):
326
+ print(f"Error: Input file {input_file} does not exist")
327
+ return False
328
+
329
+ # Create a temporary file path
330
+ temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
331
+
332
+ # FFmpeg command using the bundled binary
333
+ command = [
334
+ ffmpeg_path, # Use imageio-ffmpeg's FFmpeg
335
+ '-i', input_file, # input file
336
+ '-metadata', f'comment={comments}', # set comment metadata
337
+ '-c:v', 'copy', # copy video stream without re-encoding
338
+ '-c:a', 'copy', # copy audio stream without re-encoding
339
+ '-y', # overwrite output file if it exists
340
+ temp_file # temporary output file
341
+ ]
342
+
343
+ # Run the FFmpeg command
344
+ result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
345
+
346
+ if result.returncode == 0:
347
+ # Replace the original file with the modified one
348
+ shutil.move(temp_file, input_file)
349
+ print(f"Successfully added comments to {input_file}")
350
+ return True
351
+ else:
352
+ # Clean up temp file if FFmpeg fails
353
+ if os.path.exists(temp_file):
354
+ os.remove(temp_file)
355
+ print(f"Error: FFmpeg failed with message:\n{result.stderr}")
356
+ return False
357
+
358
+ except Exception as e:
359
+ # Clean up temp file in case of other errors
360
+ if 'temp_file' in locals() and os.path.exists(temp_file):
361
+ os.remove(temp_file)
362
+ print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
363
+ return False
364
+
365
+ # 20250506 pftq: Modified worker to accept video input, and clean frame count
366
+ @torch.no_grad()
367
+ def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
368
+
369
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
370
+
371
+ try:
372
+ # Clean GPU
373
+ if not high_vram:
374
+ unload_complete_models(
375
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
376
+ )
377
+
378
+ # Text encoding
379
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
380
+
381
+ if not high_vram:
382
+ fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
383
+ load_model_as_complete(text_encoder_2, target_device=gpu)
384
+
385
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
386
+
387
+ if cfg == 1:
388
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
389
+ else:
390
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
391
+
392
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
393
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
394
+
395
+ # 20250506 pftq: Processing input video instead of image
396
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
397
+
398
+ # 20250506 pftq: Encode video
399
+ start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
400
+
401
+ #Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
402
+
403
+ # CLIP Vision
404
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
405
+
406
+ if not high_vram:
407
+ load_model_as_complete(image_encoder, target_device=gpu)
408
+
409
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
410
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
411
+ start_embedding = image_encoder_last_hidden_state
412
+
413
+ end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
414
+ end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
415
+ end_of_input_video_embedding = end_of_input_video_last_hidden_state
416
+
417
+ # 20250507 pftq: Process end frame if provided
418
+ end_latent = None
419
+ end_clip_embedding = None
420
+ if end_frame is not None:
421
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
422
+ end_latent, end_clip_embedding, _ = image_encode(
423
+ end_frame, target_width=width, target_height=height, vae=vae,
424
+ image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
425
+ )
426
+
427
+ # Dtype
428
+ llama_vec = llama_vec.to(transformer.dtype)
429
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
430
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
431
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
432
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
433
+ end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
434
+
435
+ # 20250509 pftq: Restored original placement of total_latent_sections after video_encode
436
+ total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
437
+ total_latent_sections = int(max(round(total_latent_sections), 1))
438
+
439
+ for idx in range(batch):
440
+ if batch > 1:
441
+ print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
442
+
443
+ job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
444
+
445
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
446
+
447
+ rnd = torch.Generator("cpu").manual_seed(seed)
448
+
449
+ history_latents = video_latents.cpu()
450
+ history_pixels = None
451
+ total_generated_latent_frames = 0
452
+ previous_video = None
453
+
454
+
455
+ # 20250509 Generate backwards with end frame for better end frame anchoring
456
+ if total_latent_sections > 4:
457
+ latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
458
+ else:
459
+ latent_paddings = list(reversed(range(total_latent_sections)))
460
+
461
+ for section_index, latent_padding in enumerate(latent_paddings):
462
+ is_start_of_video = latent_padding == 0
463
+ is_end_of_video = latent_padding == latent_paddings[0]
464
+ latent_padding_size = latent_padding * latent_window_size
465
+
466
+ if stream.input_queue.top() == 'end':
467
+ stream.output_queue.push(('end', None))
468
+ return
469
+
470
+ if not high_vram:
471
+ unload_complete_models()
472
+ move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
473
+
474
+ if use_teacache:
475
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
476
+ else:
477
+ transformer.initialize_teacache(enable_teacache=False)
478
+
479
+ def callback(d):
480
+ try:
481
+ preview = d['denoised']
482
+ preview = vae_decode_fake(preview)
483
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
484
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
485
+ if stream.input_queue.top() == 'end':
486
+ stream.output_queue.push(('end', None))
487
+ raise KeyboardInterrupt('User ends the task.')
488
+ current_step = d['i'] + 1
489
+ percentage = int(100.0 * current_step / steps)
490
+ hint = f'Sampling {current_step}/{steps}'
491
+ desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
492
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
493
+ except ConnectionResetError as e:
494
+ print(f"Suppressed ConnectionResetError in callback: {e}")
495
+ return
496
+
497
+ # 20250509 pftq: Dynamic frame allocation like original num_clean_frames, fix split error
498
+ available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
499
+ if is_start_of_video:
500
+ effective_clean_frames = 1 # avoid jumpcuts from input video
501
+ else:
502
+ effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
503
+ clean_latent_pre_frames = effective_clean_frames
504
+ num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
505
+ num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
506
+ total_context_frames = num_2x_frames + num_4x_frames
507
+ total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
508
+
509
+ # 20250511 pftq: Dynamically adjust post_frames based on clean_latents_post
510
+ post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames # 20250511 pftq: Single frame for end_latent, otherwise padding causes still image
511
+ indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
512
+ clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
513
+ [clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
514
+ )
515
+ clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
516
+
517
+ # 20250509 pftq: Split context frames dynamically for 2x and 4x only
518
+ context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
519
+ split_sizes = [num_4x_frames, num_2x_frames]
520
+ split_sizes = [s for s in split_sizes if s > 0]
521
+ if split_sizes and context_frames.shape[2] >= sum(split_sizes):
522
+ splits = context_frames.split(split_sizes, dim=2)
523
+ split_idx = 0
524
+ clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
525
+ split_idx += 1 if num_4x_frames > 0 else 0
526
+ clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
527
+ else:
528
+ clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
529
+
530
+ clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents) # smoother motion but jumpcuts if end frame is too different, must change clean_latent_pre_frames to effective_clean_frames also
531
+ clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :] # smoother motion, must change post_frames to effective_clean_frames also
532
+
533
+ if is_end_of_video:
534
+ clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
535
+
536
+ # 20250509 pftq: handle end frame if available
537
+ if end_latent is not None:
538
+ #current_end_frame_weight = end_frame_weight * (latent_padding / latent_paddings[0])
539
+ #current_end_frame_weight = current_end_frame_weight * 0.5 + 0.5
540
+ current_end_frame_weight = end_frame_weight # changing this over time introduces discontinuity
541
+ # 20250511 pftq: Removed end frame weight adjustment as it has no effect
542
+ image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
543
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
544
+
545
+ # 20250511 pftq: Use end_latent only
546
+ if is_end_of_video:
547
+ clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :] # Ensure single frame
548
+
549
+ # 20250511 pftq: Pad clean_latents_pre to match clean_latent_pre_frames if needed
550
+ if clean_latents_pre.shape[2] < clean_latent_pre_frames:
551
+ clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
552
+ # 20250511 pftq: Pad clean_latents_post to match post_frames if needed
553
+ if clean_latents_post.shape[2] < post_frames:
554
+ clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
555
+
556
+ clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
557
+
558
+ max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
559
+ print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
560
+ generated_latents = sample_hunyuan(
561
+ transformer=transformer,
562
+ sampler='unipc',
563
+ width=width,
564
+ height=height,
565
+ frames=max_frames,
566
+ real_guidance_scale=cfg,
567
+ distilled_guidance_scale=gs,
568
+ guidance_rescale=rs,
569
+ num_inference_steps=steps,
570
+ generator=rnd,
571
+ prompt_embeds=llama_vec,
572
+ prompt_embeds_mask=llama_attention_mask,
573
+ prompt_poolers=clip_l_pooler,
574
+ negative_prompt_embeds=llama_vec_n,
575
+ negative_prompt_embeds_mask=llama_attention_mask_n,
576
+ negative_prompt_poolers=clip_l_pooler_n,
577
+ device=gpu,
578
+ dtype=torch.bfloat16,
579
+ image_embeddings=image_encoder_last_hidden_state,
580
+ latent_indices=latent_indices,
581
+ clean_latents=clean_latents,
582
+ clean_latent_indices=clean_latent_indices,
583
+ clean_latents_2x=clean_latents_2x,
584
+ clean_latent_2x_indices=clean_latent_2x_indices,
585
+ clean_latents_4x=clean_latents_4x,
586
+ clean_latent_4x_indices=clean_latent_4x_indices,
587
+ callback=callback,
588
+ )
589
+
590
+ if is_start_of_video:
591
+ generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
592
+
593
+ total_generated_latent_frames += int(generated_latents.shape[2])
594
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
595
+
596
+ if not high_vram:
597
+ offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
598
+ load_model_as_complete(vae, target_device=gpu)
599
+
600
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
601
+ if history_pixels is None:
602
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
603
+ else:
604
+ section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
605
+ overlapped_frames = latent_window_size * 4 - 3
606
+ current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
607
+ history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
608
+
609
+ if not high_vram:
610
+ unload_complete_models()
611
+
612
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
613
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
614
+ print(f"Latest video saved: {output_filename}")
615
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
616
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
617
+
618
+ if previous_video is not None and os.path.exists(previous_video):
619
+ try:
620
+ os.remove(previous_video)
621
+ print(f"Previous partial video deleted: {previous_video}")
622
+ except Exception as e:
623
+ print(f"Error deleting previous partial video {previous_video}: {e}")
624
+ previous_video = output_filename
625
+
626
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
627
+ stream.output_queue.push(('file', output_filename))
628
+
629
+ if is_start_of_video:
630
+ break
631
+
632
+ history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
633
+ #overlapped_frames = latent_window_size * 4 - 3
634
+ #history_pixels = soft_append_bcthw(input_video_pixels, history_pixels, overlapped_frames)
635
+
636
+ output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
637
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
638
+ print(f"Final video with input blend saved: {output_filename}")
639
+ set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
640
+ print(f"Prompt saved to mp4 metadata comments: {output_filename}")
641
+ stream.output_queue.push(('file', output_filename))
642
+
643
+ if previous_video is not None and os.path.exists(previous_video):
644
+ try:
645
+ os.remove(previous_video)
646
+ print(f"Previous partial video deleted: {previous_video}")
647
+ except Exception as e:
648
+ print(f"Error deleting previous partial video {previous_video}: {e}")
649
+ previous_video = output_filename
650
+
651
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
652
+
653
+ stream.output_queue.push(('file', output_filename))
654
+
655
+ seed = (seed + 1) % np.iinfo(np.int32).max
656
+
657
+ except:
658
+ traceback.print_exc()
659
+
660
+ if not high_vram:
661
+ unload_complete_models(
662
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
663
+ )
664
+
665
+ stream.output_queue.push(('end', None))
666
+ return
667
+
668
+ # 20250506 pftq: Modified process to pass clean frame count, etc
669
+ def get_duration(
670
+ input_video, end_frame, end_frame_weight, prompt, n_prompt,
671
+ randomize_seed,
672
+ seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
673
+ no_resize, mp4_crf, num_clean_frames, vae_batch):
674
+ global total_second_length_debug_value
675
+ if total_second_length_debug_value is not None:
676
+ return min(total_second_length_debug_value * 60 * 2, 600)
677
+ return total_second_length * 60 * 2
678
+
679
+ @spaces.GPU(duration=get_duration)
680
+ def process(
681
+ input_video, end_frame, end_frame_weight, prompt, n_prompt,
682
+ randomize_seed,
683
+ seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
684
+ no_resize, mp4_crf, num_clean_frames, vae_batch):
685
+ global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value
686
+
687
+ if torch.cuda.device_count() == 0:
688
+ gr.Warning('Set this space to GPU config to make it work.')
689
+ return None, None, None, None, None, None
690
+
691
+ if input_video_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None:
692
+ input_video = input_video_debug_value
693
+ prompt = prompt_debug_value
694
+ total_second_length = total_second_length_debug_value
695
+ input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
696
+
697
+ if randomize_seed:
698
+ seed = random.randint(0, np.iinfo(np.int32).max)
699
+
700
+ # 20250506 pftq: Updated assertion for video input
701
+ assert input_video is not None, 'No input video!'
702
+
703
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
704
+
705
+ # 20250507 pftq: Even the H100 needs offloading if the video dimensions are 720p or higher
706
+ if high_vram and (no_resize or resolution>640):
707
+ print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
708
+ high_vram = False
709
+ vae.enable_slicing()
710
+ vae.enable_tiling()
711
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
712
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
713
+
714
+ # 20250508 pftq: automatically set distilled cfg to 1 if cfg is used
715
+ if cfg > 1:
716
+ gs = 1
717
+
718
+ stream = AsyncStream()
719
+
720
+ # 20250506 pftq: Pass num_clean_frames, vae_batch, etc
721
+ async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
722
+
723
+ output_filename = None
724
+
725
+ while True:
726
+ flag, data = stream.output_queue.next()
727
+
728
+ if flag == 'file':
729
+ output_filename = data
730
+ yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
731
+
732
+ if flag == 'progress':
733
+ preview, desc, html = data
734
+ #yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
735
+ yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True) # 20250506 pftq: Keep refreshing the video in case it got hidden when the tab was in the background
736
+
737
+ if flag == 'end':
738
+ yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
739
+ break
740
+
741
+ def end_process():
742
+ stream.input_queue.push('end')
743
+
744
+ quick_prompts = [
745
+ 'The girl dances gracefully, with clear movements, full of charm.',
746
+ 'A character doing some simple body movements.',
747
+ ]
748
+ quick_prompts = [[x] for x in quick_prompts]
749
+
750
+ css = make_progress_bar_css()
751
+ block = gr.Blocks(css=css).queue(
752
+ max_size=10 # 20250507 pftq: Limit queue size
753
+ )
754
+ with block:
755
+ if torch.cuda.device_count() == 0:
756
+ with gr.Row():
757
+ gr.HTML("""
758
+ <p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
759
+
760
+ You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
761
+ </big></big></big></p>
762
+ """)
763
+ # 20250506 pftq: Updated title to reflect video input functionality
764
+ gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
765
+ with gr.Row():
766
+ with gr.Column():
767
+
768
+ # 20250506 pftq: Changed to Video input from Image
769
+ with gr.Row():
770
+ input_video = gr.Video(sources='upload', label="Input Video", height=320)
771
+ with gr.Column():
772
+ # 20250507 pftq: Added end_frame + weight
773
+ end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
774
+ end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image; no effect')
775
+
776
+ prompt = gr.Textbox(label="Prompt", value='')
777
+
778
+ with gr.Row():
779
+ start_button = gr.Button(value="Start Generation", variant="primary")
780
+ end_button = gr.Button(value="End Generation", variant="stop", interactive=False)
781
+
782
+ with gr.Accordion("Advanced settings", open=False):
783
+ with gr.Row():
784
+ use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
785
+ no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
786
+
787
+ randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
788
+ seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
789
+
790
+ batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
791
+
792
+ resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0)
793
+
794
+ total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
795
+
796
+ # 20250506 pftq: Reduced default distilled guidance scale to improve adherence to input video
797
+ gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
798
+ cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.') # Should not change
799
+ rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01) # Should not change
800
+
801
+ n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
802
+
803
+ steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
804
+
805
+ # 20250506 pftq: Renamed slider to Number of Context Frames and updated description
806
+ num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
807
+
808
+ default_vae = 32
809
+ if high_vram:
810
+ default_vae = 128
811
+ elif free_mem_gb>=20:
812
+ default_vae = 64
813
+
814
+ vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
815
+
816
+ latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
817
+
818
+ gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
819
+
820
+ mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
821
+
822
+ with gr.Accordion("Debug", open=False):
823
+ input_video_debug = gr.Video(sources='upload', label="Input Video Debug", height=320)
824
+ prompt_debug = gr.Textbox(label="Prompt Debug", value='')
825
+ total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=5, step=0.1)
826
+
827
+ with gr.Column():
828
+ preview_image = gr.Image(label="Next Latents", height=200, visible=False)
829
+ result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
830
+ progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
831
+ progress_bar = gr.HTML('', elem_classes='no-generating-animation')
832
+
833
+ with gr.Row(visible=False):
834
+ gr.Examples(
835
+ examples = [
836
+ [
837
+ "./img_examples/Example1.mp4", # input_video
838
+ None, # end_frame
839
+ 0.0, # end_frame_weight
840
+ "View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
841
+ "Missing arm, unrealistic position, blurred, blurry", # n_prompt
842
+ True, # randomize_seed
843
+ 42, # seed
844
+ 1, # batch
845
+ 640, # resolution
846
+ 1, # total_second_length
847
+ 9, # latent_window_size
848
+ 25, # steps
849
+ 1.0, # cfg
850
+ 10.0, # gs
851
+ 0.0, # rs
852
+ 6, # gpu_memory_preservation
853
+ True, # use_teacache
854
+ False, # no_resize
855
+ 16, # mp4_crf
856
+ 5, # num_clean_frames
857
+ default_vae
858
+ ],
859
+ ],
860
+ run_on_click = True,
861
+ fn = process,
862
+ inputs = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch],
863
+ outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
864
+ cache_examples = True,
865
+ )
866
+
867
+ # 20250506 pftq: Updated inputs to include num_clean_frames
868
+ ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
869
+ start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
870
+ end_button.click(fn=end_process)
871
+
872
+
873
+ def handle_field_debug_change(input_video_debug_data, prompt_debug_data, total_second_length_debug_data):
874
+ global input_video_debug_value, prompt_debug_value, total_second_length_debug_value
875
+ input_video_debug_value = input_video_debug_data
876
+ prompt_debug_value = prompt_debug_data
877
+ total_second_length_debug_value = total_second_length_debug_data
878
+ return []
879
+
880
+ input_video_debug.upload(
881
+ fn=handle_field_debug_change,
882
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
883
+ outputs=[]
884
+ )
885
+
886
+ prompt_debug.change(
887
+ fn=handle_field_debug_change,
888
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
889
+ outputs=[]
890
+ )
891
+
892
+ total_second_length_debug.change(
893
+ fn=handle_field_debug_change,
894
+ inputs=[input_video_debug, prompt_debug, total_second_length_debug],
895
+ outputs=[]
896
+ )
897
+
898
+ block.launch(share=True)
diffusers_helper/bucket_tools.py CHANGED
@@ -15,6 +15,79 @@ bucket_options = {
15
  (864, 448),
16
  (960, 416),
17
  ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  }
19
 
20
 
@@ -26,5 +99,5 @@ def find_nearest_bucket(h, w, resolution=640):
26
  if metric <= min_metric:
27
  min_metric = metric
28
  best_bucket = (bucket_h, bucket_w)
 
29
  return best_bucket
30
-
 
15
  (864, 448),
16
  (960, 416),
17
  ],
18
+ 672: [
19
+ (480, 864),
20
+ (512, 832),
21
+ (544, 768),
22
+ (576, 704),
23
+ (608, 672),
24
+ (640, 640),
25
+ (672, 608),
26
+ (704, 576),
27
+ (768, 544),
28
+ (832, 512),
29
+ (864, 480),
30
+ ],
31
+ 704: [
32
+ (480, 960),
33
+ (512, 864),
34
+ (544, 832),
35
+ (576, 768),
36
+ (608, 704),
37
+ (640, 672),
38
+ (672, 640),
39
+ (704, 608),
40
+ (768, 576),
41
+ (832, 544),
42
+ (864, 512),
43
+ (960, 480),
44
+ ],
45
+ 768: [
46
+ (512, 960),
47
+ (544, 864),
48
+ (576, 832),
49
+ (608, 768),
50
+ (640, 704),
51
+ (672, 672),
52
+ (704, 640),
53
+ (768, 608),
54
+ (832, 576),
55
+ (864, 544),
56
+ (960, 512),
57
+ ],
58
+ 832: [
59
+ (544, 960),
60
+ (576, 864),
61
+ (608, 832),
62
+ (640, 768),
63
+ (672, 704),
64
+ (704, 672),
65
+ (768, 640),
66
+ (832, 608),
67
+ (864, 576),
68
+ (960, 544),
69
+ ],
70
+ 864: [
71
+ (576, 960),
72
+ (608, 864),
73
+ (640, 832),
74
+ (672, 768),
75
+ (704, 704),
76
+ (768, 672),
77
+ (832, 640),
78
+ (864, 608),
79
+ (960, 576),
80
+ ],
81
+ 960: [
82
+ (608, 960),
83
+ (640, 864),
84
+ (672, 832),
85
+ (704, 768),
86
+ (768, 704),
87
+ (832, 672),
88
+ (864, 640),
89
+ (960, 608),
90
+ ],
91
  }
92
 
93
 
 
99
  if metric <= min_metric:
100
  min_metric = metric
101
  best_bucket = (bucket_h, bucket_w)
102
+ print("The resolution of the generated video will be " + str(best_bucket))
103
  return best_bucket
 
img_examples/{1.png → Example1.mp4} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a7d3490cb499fdbf55d64ad2f06e7c7e7a336245ba2cff50ddb2c9b47299cdae
3
- size 1329228
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a906a1d14d1699f67ca54865c7aa5857e55246f4ec63bbaf3edcf359e73bebd1
3
+ size 240647
img_examples/{2.jpg → Example1.png} RENAMED
File without changes
img_examples/{3.png → Example2.webp} RENAMED
File without changes
img_examples/Example3.jpg ADDED

Git LFS Details

  • SHA256: b1a9be93d2f117d687e08c91c043e67598bdb7c44f5c932f18a3026790fb82fa
  • Pointer size: 131 Bytes
  • Size of remote file: 208 kB
requirements.txt CHANGED
@@ -1,12 +1,12 @@
1
- accelerate==1.6.0
2
  diffusers==0.33.1
3
- transformers==4.46.2
4
  sentencepiece==0.2.0
5
- pillow==11.1.0
6
  av==12.1.0
7
  numpy==1.26.2
8
  scipy==1.12.0
9
- requests==2.31.0
10
  torchsde==0.2.6
11
  torch>=2.0.0
12
  torchvision
@@ -15,4 +15,10 @@ einops
15
  opencv-contrib-python
16
  safetensors
17
  huggingface_hub
18
- spaces
 
 
 
 
 
 
 
1
+ accelerate==1.7.0
2
  diffusers==0.33.1
3
+ transformers==4.52.4
4
  sentencepiece==0.2.0
5
+ pillow==11.2.1
6
  av==12.1.0
7
  numpy==1.26.2
8
  scipy==1.12.0
9
+ requests==2.32.4
10
  torchsde==0.2.6
11
  torch>=2.0.0
12
  torchvision
 
15
  opencv-contrib-python
16
  safetensors
17
  huggingface_hub
18
+ spaces
19
+ decord
20
+ imageio_ffmpeg
21
+ sageattention
22
+ xformers==0.0.29.post3
23
+ bitsandbytes
24
+ pillow-heif==0.22.0