Luigi's picture
apply new sheet prefix T3
15cfec8
import gradio as gr
import pandas as pd
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
import statsmodels.api as sm
import scipy.optimize as opt
import csv
import os
# Global state
data_df = None
poly = None
model_power = None
model_er = None
def hex_to_int(x):
"""Safely parse a hex string (with or without '0x') to int."""
try:
return int(str(x).strip(), 16)
except:
return np.nan
# Panel 1: Load & Preview
def load_and_preview(file, n):
if file is None:
# Hide the preview until we have data
return gr.update(visible=False), "▶️ Please upload an .xlsx or .csv file"
global data_df
try:
filename = file.name
ext = os.path.splitext(filename)[1].lower()
if ext in ['.xlsx', '.xls']:
# Excel format
xls = pd.ExcelFile(filename)
rows = []
for sheet in xls.sheet_names:
if sheet.startswith("T3"):
df = pd.read_excel(xls, sheet_name=sheet, header=None)
h0 = df.iloc[1].ffill()
h1 = df.iloc[2].fillna("")
cols = [
(f"{a} {b}".strip() if b else str(a).strip())
for a, b in zip(h0, h1)
]
df.columns = cols
raw = df.iloc[3:][
["Setting Power", "Setting ER", "EA-4000 Power", "EA-4000 ER"]
].copy()
raw["Setting Power"] = raw["Setting Power"].ffill()
raw["power_hex"] = raw["Setting Power"]
raw["er_hex"] = raw["Setting ER"]
raw["power_dec"] = raw["power_hex"].apply(hex_to_int)
raw["er_dec"] = raw["er_hex"].apply(hex_to_int)
raw["power_meas"] = pd.to_numeric(raw["EA-4000 Power"], errors="coerce")
raw["er_meas"] = pd.to_numeric(raw["EA-4000 ER"], errors="coerce")
raw["Device"] = sheet
valid = raw[raw["power_meas"].notna()]
rows.append(valid[[
"Device","power_hex","er_hex",
"power_dec","er_dec","power_meas","er_meas"
]])
if not rows:
raise ValueError("No valid sheets (prefix 'T3') found in Excel file.")
data_df = pd.concat(rows, ignore_index=True)
elif ext == '.csv':
# CSV format (exported)
df = pd.read_csv(filename, quoting=csv.QUOTE_ALL, escapechar='\\')
required = {"Device","power_hex","er_hex","power_dec","er_dec","power_meas","er_meas"}
if not required.issubset(df.columns):
missing = required - set(df.columns)
raise ValueError(f"CSV missing required columns: {missing}")
data_df = df.copy()
# ensure proper types
data_df['power_dec'] = data_df['power_hex'].apply(hex_to_int)
data_df['er_dec'] = data_df['er_hex'].apply(hex_to_int)
data_df['power_meas'] = pd.to_numeric(data_df['power_meas'], errors='coerce')
data_df['er_meas'] = pd.to_numeric(data_df['er_meas'], errors='coerce')
else:
raise ValueError(f"Unsupported file type: {ext}")
preview_df = data_df.head(int(n))
# Un-hide and populate the preview grid
return gr.update(value=preview_df, visible=True), "✅ Data loaded successfully"
except Exception as e:
# On error, keep it hidden
return gr.update(visible=False), f"❌ {e}"
def export_csv():
"""Export the loaded training dataset to CSV for inspection."""
global data_df
if data_df is None:
return gr.update(visible=False, value=None)
path = "training_data.csv"
# wrap every field in double-quotes so Excel won’t re-interpret it
data_df.to_csv(path, index=False,
quoting=csv.QUOTE_ALL,
escapechar='\\')
return gr.update(visible=True, value=path)
# Panel 2: Train Hierarchical Quadratic RSM
def train_model():
global poly, model_power, model_er, data_df
if data_df is None:
return "❌ No data loaded"
X = data_df[["power_dec", "er_dec"]].values
y_p = data_df["power_meas"].values
y_e = data_df["er_meas"].values
groups = data_df["Device"]
poly = PolynomialFeatures(degree=2, include_bias=True)
Xp = poly.fit_transform(X)
model_power = sm.MixedLM(endog=y_p, exog=Xp, groups=groups).fit()
model_er = sm.MixedLM(endog=y_e, exog=Xp, groups=groups).fit()
pred_p = model_power.fittedvalues
pred_e = model_er.fittedvalues
r2p = 1 - np.sum((y_p - pred_p)**2)/np.sum((y_p - y_p.mean())**2)
r2e = 1 - np.sum((y_e - pred_e)**2)/np.sum((y_e - y_e.mean())**2)
rmse_p = np.sqrt(np.mean((y_p - pred_p)**2))
rmse_e = np.sqrt(np.mean((y_e - pred_e)**2))
return (
f"✅ Trained hierarchical quadratic RSM\n"
f"Power → R²={r2p:.3f}, RMSE={rmse_p:.3f}\n"
f"ER → R²={r2e:.3f}, RMSE={rmse_e:.3f}"
)
# Panel 3: Calibrate & Predict
def calibrate_and_predict(calib_df, tp, te):
global poly, model_power, model_er, data_df
if poly is None:
return {"error": "Model not trained"}
df = calib_df # already a pandas DataFrame
samples = []
for _, r in df.iterrows():
phex = hex_to_int(r["power_hex"])
ehex = hex_to_int(r["er_hex"])
pm = pd.to_numeric(r["power_meas"], errors="coerce")
em = pd.to_numeric(r["er_meas"], errors="coerce")
if not np.isnan(phex) and not np.isnan(ehex) and not np.isnan(pm) and not np.isnan(em):
samples.append((phex, ehex, pm, em))
if samples:
Xc = np.array([[p,e] for p,e,_,_ in samples])
Xcp = poly.transform(Xc)
pred_p = model_power.predict(exog=Xcp)
pred_e = model_er .predict(exog=Xcp)
offset_p = float(np.mean([pm - p for (_,_,pm,_), p in zip(samples, pred_p)]))
offset_e = float(np.mean([em - e for (_,_,_,em), e in zip(samples, pred_e)]))
else:
offset_p = offset_e = 0.0
p_min, p_max = int(data_df["power_dec"].min()), int(data_df["power_dec"].max())
e_min, e_max = int(data_df["er_dec"].min()), int(data_df["er_dec"].max())
def obj(vars):
x = np.array(vars).reshape(1, -1)
xp = poly.transform(x)
p0 = model_power.predict(exog=xp)[0] + offset_p
e0 = model_er .predict(exog=xp)[0] + offset_e
return (p0 - tp)**2 + (e0 - te)**2
res = opt.minimize(
obj,
x0=[(p_min+p_max)/2, (e_min+e_max)/2],
bounds=[(p_min, p_max), (e_min, e_max)]
)
ph, eh = map(int, np.round(res.x))
return {
"Power Setting (hex)": hex(ph),
"ER Setting (hex)" : hex(eh)
}
with gr.Blocks() as demo:
gr.Markdown("# Power and ER Calibration APP")
with gr.Tab("1. Load Data"):
file_in = gr.File(label="Upload .xlsx or .csv")
n_slider = gr.Slider(1, 2000, value=99, step=1, label="Rows to preview")
preview = gr.DataFrame(visible=False)
status = gr.Textbox()
file_in.change(
fn=load_and_preview,
inputs=[file_in, n_slider],
outputs=[preview, status]
)
export_btn = gr.Button("Export Training Dataset (CSV)")
csv_file = gr.File(label="Download CSV", visible=False)
export_btn.click(
fn=export_csv,
inputs=None,
outputs=csv_file
)
with gr.Tab("2. Train Model"):
train_btn = gr.Button("Train RSM")
train_out = gr.Textbox()
train_btn.click(fn=train_model, inputs=None, outputs=train_out)
with gr.Tab("3. Calibrate & Predict"):
gr.Markdown("**Enter up to 5 calibration samples and target values**")
calib_df = gr.DataFrame(
headers=["power_hex", "er_hex", "power_meas", "er_meas"],
row_count=5, col_count=4, interactive=True
)
tp = gr.Number(value=2.5, label="Target Power (dec)")
te = gr.Number(value=12.75, label="Target ER (dec)")
pred_btn = gr.Button("Predict Settings")
pred_out = gr.JSON(label="Predicted Settings")
pred_btn.click(
fn=calibrate_and_predict,
inputs=[calib_df, tp, te],
outputs=[pred_out]
)
demo.launch()