Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, Request | |
from fastapi.responses import HTMLResponse, JSONResponse | |
import uvicorn | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
app = FastAPI() | |
# Chargement du modèle uniquement si CUDA est disponible | |
if torch.cuda.is_available(): | |
model_id = "mistralai/Mistral-7B-Instruct-v0.3" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
else: | |
model = None | |
tokenizer = None | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
def generate_response(message: str, history: list) -> str: | |
conversation = history + [{"role": "user", "content": message}] | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": 1024, | |
"do_sample": True, | |
"top_p": 0.9, | |
"top_k": 50, | |
"temperature": 0.6, | |
"num_beams": 1, | |
"repetition_penalty": 1.2, | |
} | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
response_text = "" | |
for text in streamer: | |
response_text += text | |
return response_text | |
async def chat_endpoint(request: Request): | |
data = await request.json() | |
message = data.get("message", "") | |
# Utilisation d'un historique vide pour simplifier | |
response_text = generate_response(message, history=[]) | |
return JSONResponse({"response": response_text}) | |
async def root(): | |
with open("index.html", "r", encoding="utf-8") as f: | |
html_content = f.read() | |
return HTMLResponse(content=html_content, status_code=200) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |