Murtaza249's picture
Update app.py
258745f verified
import streamlit as st
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import random
import time
# Configure page
st.set_page_config(
page_title="Text-to-Quiz Generator",
page_icon="🧠",
layout="wide"
)
# Load the model with caching
@st.cache_resource
def load_model():
try:
# Check if PyTorch is available
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
# Using a smaller, more efficient model that works well for question generation
model_name = "valhalla/t5-small-e2e-qg"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Move model to device
model = model.to(device)
return model, tokenizer, device
except Exception as e:
st.error(f"Error loading model: {str(e)}")
print(f"Error details: {str(e)}")
return None, None, None
# Custom CSS
def load_css():
st.markdown("""
<style>
.main {
padding: 2rem;
}
.question-box {
background-color: #f0f7ff;
padding: 1.5rem;
border-radius: 10px;
margin-bottom: 1rem;
border-left: 5px solid #4361ee;
}
.stButton button {
background-color: #4361ee;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
font-weight: bold;
}
.title-box {
padding: 1rem;
border-radius: 5px;
margin-bottom: 2rem;
text-align: center;
background: linear-gradient(90deg, #4361ee 0%, #3a0ca3 100%);
color: white;
}
.score-box {
font-size: 1.5rem;
padding: 1rem;
border-radius: 5px;
text-align: center;
font-weight: bold;
}
.feedback {
padding: 1rem;
border-radius: 5px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Function to generate questions from a passage
def generate_questions(model, tokenizer, device, text, num_questions=5):
try:
# Process text in chunks if it's too long
max_length = 512
chunks = []
if len(text) > max_length:
# Simple chunking based on sentences
sentences = text.split('. ')
current_chunk = ""
for sentence in sentences:
if len(current_chunk) + len(sentence) < max_length:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk)
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk)
else:
chunks = [text]
all_generated_texts = []
# Process each chunk
for chunk in chunks:
inputs = tokenizer(chunk, return_tensors="pt", max_length=512, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate with beam search for multiple diverse outputs
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=64,
num_beams=5,
num_return_sequences=min(3, num_questions), # Generate up to 3 questions per chunk
temperature=1.0,
diversity_penalty=1.0,
num_beam_groups=5,
early_stopping=True
)
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
all_generated_texts.extend(decoded_outputs)
# If we have enough questions, stop
if len(all_generated_texts) >= num_questions:
break
# Ensure we don't return more than num_questions
all_generated_texts = all_generated_texts[:num_questions]
# Process and extract questions and answers
questions_answers = []
for generated_text in all_generated_texts:
# Try to find question and answer
if "?" in generated_text:
parts = generated_text.split("?", 1)
if len(parts) > 1:
question = parts[0].strip() + "?"
answer = parts[1].strip()
# Clean up answer if it starts with common patterns
for prefix in ["answer:", "a:", " - "]:
if answer.lower().startswith(prefix):
answer = answer[len(prefix):].strip()
if question and answer and len(question) > 10:
questions_answers.append({
"question": question,
"answer": answer
})
return questions_answers
except Exception as e:
st.error(f"Error generating questions: {str(e)}")
print(f"Detailed error: {str(e)}")
return []
# Function to create quiz from generated Q&A pairs
def create_quiz(questions_answers, num_options=4):
quiz_items = []
# First filter out very short answers and duplicates
filtered_qa = []
seen_questions = set()
for qa in questions_answers:
q = qa["question"].strip()
a = qa["answer"].strip()
# Skip very short answers
if len(a) < 2 or len(q) < 10:
continue
# Skip duplicate questions
q_lower = q.lower()
if q_lower in seen_questions:
continue
seen_questions.add(q_lower)
filtered_qa.append({"question": q, "answer": a})
# Use the filtered Q&A pairs
all_answers = [qa["answer"] for qa in filtered_qa]
for i, qa in enumerate(filtered_qa):
correct_answer = qa["answer"]
# Create distractors by selecting random answers from other questions
other_answers = [a for a in all_answers if a != correct_answer]
if other_answers:
# Select random distractors
num_distractors = min(num_options - 1, len(other_answers))
distractors = random.sample(other_answers, num_distractors)
# Combine correct answer and distractors
options = [correct_answer] + distractors
random.shuffle(options)
quiz_items.append({
"id": i,
"question": qa["question"],
"correct_answer": correct_answer,
"options": options
})
return quiz_items
# Alternative question generation using simpler approach
def generate_questions_simple(text, num_questions=5):
try:
# Simple question generation for demonstration
# In a real app, you'd use a proper NLP model
# Extract sentences
sentences = text.split('.')
sentences = [s.strip() for s in sentences if len(s.strip()) > 20]
# Select random sentences to turn into questions
if len(sentences) < num_questions:
selected_sentences = sentences
else:
selected_sentences = random.sample(sentences, num_questions)
questions_answers = []
# Simple transformation of sentences into questions
for sentence in selected_sentences:
# Very simple question generation (not ideal but works as fallback)
words = sentence.split()
if len(words) < 5:
continue
# Extract key entities for answer
potential_answer = " ".join(words[-3:])
# Create question from beginning of sentence
question_words = words[:len(words)-3]
question = " ".join(question_words) + "?"
questions_answers.append({
"question": question,
"answer": potential_answer
})
return questions_answers
except Exception as e:
print(f"Error in simple question generation: {str(e)}")
return []
# Main app
def main():
load_css()
# App title
st.markdown('<div class="title-box"><h1>🧠 Text-to-Quiz Generator</h1></div>', unsafe_allow_html=True)
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("### Enter a passage to generate quiz questions")
passage = st.text_area(
"Paste your text here:",
height=200,
placeholder="Enter a paragraph or article here to generate quiz questions..."
)
with col2:
st.markdown("### Settings")
num_questions = st.slider("Number of questions to generate", 3, 10, 5)
st.markdown("---")
st.markdown("""
**Tips for best results:**
- Use clear, factual content
- Include specific details
- Text length: 100-500 words works best
- Educational content works better than narrative
""")
# Generate Quiz button with automatic rerun logic
if "quiz_generated" not in st.session_state:
st.session_state.quiz_generated = False
if st.button("🧠 Generate Quiz"):
if passage and len(passage) > 50:
# Loading the model (with the cached resource)
with st.spinner("Loading AI model..."):
model, tokenizer, device = load_model()
if model and tokenizer and device:
# Generate questions
with st.spinner("Generating questions..."):
# Add a small delay for UX
time.sleep(1)
questions_answers = generate_questions(model, tokenizer, device, passage, num_questions)
# If primary method fails, try fallback approach
if not questions_answers:
st.warning("Advanced question generation failed. Using simple approach instead.")
questions_answers = generate_questions_simple(passage, num_questions)
if questions_answers:
# Create quiz
quiz_items = create_quiz(questions_answers)
if quiz_items:
# Store in session state
st.session_state.quiz_items = quiz_items
st.session_state.user_answers = {}
st.session_state.quiz_submitted = False
st.session_state.show_explanations = False
st.session_state.quiz_generated = True
else:
st.error("Couldn't create valid quiz questions. Please try a different text or add more content.")
else:
st.error("Failed to generate questions. Please try a different passage.")
else:
st.error("Failed to load the question generation model. Please try again.")
else:
st.warning("Please enter a longer passage (at least 50 characters).")
# Display quiz if available in session state
if "quiz_items" in st.session_state and st.session_state.quiz_items:
st.markdown("---")
st.markdown("## Your Quiz")
quiz_items = st.session_state.quiz_items
# Create a form for the quiz
with st.form("quiz_form"):
for i, item in enumerate(quiz_items):
st.markdown(f'<div class="question-box"><h3>Question {i+1}</h3><p>{item["question"]}</p></div>', unsafe_allow_html=True)
key = f"question_{item['id']}"
st.session_state.user_answers[key] = st.radio(
"Select your answer:",
options=item["options"],
key=key
)
submit_button = st.form_submit_button("Submit Answers")
if submit_button:
st.session_state.quiz_submitted = True
# Show results if quiz was submitted
if st.session_state.quiz_submitted:
score = 0
st.markdown("## Quiz Results")
for i, item in enumerate(quiz_items):
key = f"question_{item['id']}"
user_answer = st.session_state.user_answers[key]
correct = user_answer == item["correct_answer"]
if correct:
score += 1
st.markdown(f'<div class="feedback" style="background-color: #d4edda; border-left: 5px solid #28a745;"><h4>Question {i+1}: Correct! βœ…</h4><p><strong>Your answer:</strong> {user_answer}</p></div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="feedback" style="background-color: #f8d7da; border-left: 5px solid #dc3545;"><h4>Question {i+1}: Incorrect ❌</h4><p><strong>Your answer:</strong> {user_answer}<br><strong>Correct answer:</strong> {item["correct_answer"]}</p></div>', unsafe_allow_html=True)
# Show score
percentage = (score / len(quiz_items)) * 100
if percentage >= 80:
color = "#28a745" # Green
message = "Excellent! πŸ†"
elif percentage >= 60:
color = "#17a2b8" # Blue
message = "Good job! πŸ‘"
else:
color = "#ffc107" # Yellow
message = "Keep practicing! πŸ“š"
st.markdown(f'<div class="score-box" style="background-color: {color}15; border-left: 5px solid {color};">{message}<br>Your Score: {score}/{len(quiz_items)} ({percentage:.1f}%)</div>', unsafe_allow_html=True)
# Restart button
if st.button("Generate Another Quiz"):
# Clear session state
for key in ["quiz_items", "user_answers", "quiz_submitted", "show_explanations", "quiz_generated"]:
if key in st.session_state:
del st.session_state[key]
# No need for rerun as page will refresh naturally with next event
if __name__ == "__main__":
main()